

Tiny C Projects

DAN GOOKIN

To comment go to liveBook

Manning

https://livebook.manning.com/#!/book/tiny-c-projects/discussion

Shelter Island

For more information on this and other Manning titles go to

www.manning.com

https://www.manning.com/

Copyright

For online information and ordering of these and other
Manning books, please visit www.manning.com. The
publisher offers discounts on these books when ordered in
quantity.

For more information, please contact

Special Sales Department
Manning Publications Co.

20 Baldwin Road
PO Box 761

Shelter Island, NY 11964
Email: orders@manning.com

©2022 by Manning Publications Co. All rights
reserved.

No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by means
electronic, mechanical, photocopying, or otherwise, without
prior written permission of the publisher.

Many of the designations used by manufacturers and sellers
to distinguish their products are claimed as trademarks.
Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the
designations have been printed in initial caps or all caps.

♾ Recognizing the importance of preserving what has been
written, it is Manning’s policy to have the books we publish
printed on acid-free paper, and we exert our best efforts to

https://www.manning.com/

that end. Recognizing also our responsibility to conserve the
resources of our planet, Manning books are printed on
paper that is at least 15 percent recycled and processed
without the use of elemental chlorine.

Manning Publications Co.
20 Baldwin Road Technical
PO Box 761
Shelter Island, NY 11964

Development editor: Becky Whitney
Technical development editor: Christopher Haupt

Review editor: Aleksandar Dragosavljević
Production editor: Andy Marinkovich

Copy editor: Pamela Hunt
Proofreader: Keri Hales

Technical proofreader: Frances Buontempo
Typesetter: Dennis Dalinnik

Cover designer: Marija Tudor

ISBN: 9781633439825

contents

front matter

preface

acknowledgments

about this book

about the author

about the cover illustration

1 Configuration and setup

1.1 The C development cycle

Editing source code

Compiling, linking, building

1.2 The integrated development environment (IDE)

Choosing an IDE

Using Code::Blocks

Using XCode

1.3 Command-line compiling

Accessing the terminal window

Reviewing basic shell commands

Exploring text screen editors

Using a GUI editor

Compiling and running

1.4 Libraries and compiler options

Linking libraries and setting other options in an IDE

Using command-line compiler options

1.5 Quiz

2 Daily greetings

2.1 The shell starts

Understanding how the shell fits in

Exploring various shell startup scripts

Editing the shell startup script

2.2 A simple greeting

Coding a greeting

Adding a name as an argument

2.3 The time of day

Obtaining the current time

Mixing in the general time of day

Adding specific time info

2.4 The current moon phase

Observing moon phases

Writing the moon phase algorithm

Adding the moon phase to your greeting

2.5 A pithy saying

Creating a pithy phrase repository

Randomly reading a pithy phrase

Adding the phrase to your greeting code

3 NATO output

3.1 The NATO alphabet

3.2 The NATO translator program

Writing the NATO translator

Reading and converting a file

3.3 From NATO to English

Converting NATO input to character output

Reading NATO input from a file

4 Caesarean cipher

4.1 I/O filters

Understanding stream I/O

Writing a simple filter

Working a filter at the command prompt

4.2 On the front lines with Caesar

Rotating 13 characters

Devising a more Caesarean cipher

4.3 Deep into filter madness

Building the hex output filter

Creating a NATO filter

Filtering words

5 Encoding and decoding

5.1 The concept of plain text

Understanding ASCII

Exploring the control codes

Generating noncharacter output

Playing with ASCII conversion tricks

5.2 The hex encoder/decoder

Writing a simple hex encoder/decoder

Coding a better hex encoder/decoder

Adding a wee bit of error-checking

5.3 URL encoding

Knowing all the URL encoding rules

Writing a URL encoder

Creating a URL decoder

6 Password generators

6.1 Password strategies

Avoiding basic and useless passwords

Adding password complexity

Applying the word strategy

6.2 The complex password jumble

Building a silly random password program

Adding conditions to the password program

Improving upon the password

6.3 Words in passwords

Generating random words, Mad Libs style

Building a random word password generator

7 String utilities

7.1 Strings in C

Understanding the string

Measuring a string

Reviewing C string functions

Returning versus modifying directly

7.2 String functions galore

Changing case

Reversing a string

Trimming a string

Splitting a string

Inserting one string into another

Counting words in a string

Converting tabs to spaces

7.3 A string library

Writing the library source and header file

Creating a library

Using the string library

7.4 A kinda OOP approach

Adding a function to a structure

Creating a string “object”

8 Unicode and wide characters

8.1 Text representation in computers

Reviewing early text formats

Evolving into ASCII text and code pages

Diving into Unicode

8.2 Wide character programming

Setting the locale

Exploring character types

Generating wide character output

Receiving wide character input

Working with wide characters in files

9 Hex dumper

9.1 Bytes and data

Reviewing storage units and size mayhem

Outputting byte values

Dumping data

9.2 Dump that file!

Reading file data

Fixing uneven output

9.3 Command-line options

Using the getopt() function

Updating the dumpfile program code

Setting abbreviated output

Activating octal output

10 Directory tree

10.1 The filesystem

10.2 File and directory details

Gathering file info

Exploring file type and permissions

Reading a directory

10.3 Subdirectory exploration

Using directory exploration tools

Diving into a subdirectory

Mining deeper with recursion

10.4 A directory tree

Pulling out the directory name

Monitoring directory depth

11 File finder

11.1 The great file hunt

11.2 A file finder

Coding the Find File utility

Understanding the glob

Using wildcards to find files

11.3 The duplicate file finder

Building a file list

Locating the duplicates

12 Holiday detector

12.1 The operating system wants its vig

Understanding exit status versus the termination status

Setting a return value

Interpreting the return value

Using the preset return values

12.2 All about today

Getting today’s date

Obtaining any old date

12.3 Happy holidays

Reviewing holidays in the United States

Discovering holidays in the UK

12.4 Is today a holiday?

Reporting regular date holidays

Dealing with irregular holidays

Calculating Easter

Running the date gauntlet

13 Calendar

13.1 The calendar program

13.2 Good dates to know

Creating constants and enumerating dates

Finding the day of the week

Calculating the first day of the month

Identifying leap years

Getting the time zone correct

13.3 Calendar utilities

Generating a week

Showing a month

Displaying a full year

Putting the full year into a grid

13.4 A calendar in color

Understanding terminal colors

Generating a tight-but-colorful calendar

Coloring holidays

14 Lotto picks

14.1 A tax for those who are bad at math

Playing the lottery

Understanding the odds

Programming the odds

14.2 Here are your winning numbers

Generating random values

Drawing lotto balls

Avoiding repeated numbers, another approach

14.3 Never tell me the odds

Creating the lotto() function

Matching lottery picks

Testing the odds

15 Tic-tac-toe

15.1 A silly kids’ game

Playing tic-tac-toe

Approaching the game mathematically

15.2 The basic game

Creating the game grid

Adding game play

Limiting the input to free squares

Determining the winner

15.3 The computer plays

Choosing the number of players

Coding a dumb opponent

Adding some intelligence

index

front matter

preface

Is C programming still relevant?

Every time I read that C is becoming obsolete, another
article pops up on how C continues to be one of the most
popular, in-demand programming languages—even as it
passes its 50th birthday. Disparagement aside, C is the
primary language used for system programming,
networking, gaming, and coding microcontrollers. Even
those trendy languages that the cool kids boast about most
likely have their core originally written in C. It’s not going
away any time soon.

I often refer to C as the Latin of computer programming
languages. Its syntax and even a few keywords are
borrowed heavily by other languages. Just as knowing Latin
helps you understand and learn French, Italian, Spanish,
and other languages, knowing C allows you to easily
understand and learn other programming languages. But
don’t stop there! Honing your C skills is just as important as
exercising a muscle. And what better way to work on and
perfect your C programming abilities than to continually
write small, useful programs?

Why did I write this book?

I feel the best way to learn programming is to use small
demonstration programs. Each one focuses on a specific
part of the language. The code is short and easy to type,
and it drives home a point. If the little program can do
something impressive, inspiring, or silly, all the better.

My approach contrasts with other programming books I’ve
read. These tedious tomes often list a single, huge program
that drives home all the concepts. Typing 100 lines of code
when you have no clue what’s going on is discouraging, and
it misses one of the more delightful aspects of
programming: instant feedback.

Somehow, the habit of writing tiny programs sticks with me,
even beyond when I’m writing a C programming book or
teaching an online C programming course. For years, I’ve
been coding tiny programs on my blog at https://c-for-
dummies.com/blog. I do so to provide supplemental
material for my readers and learners, but also because I
enjoy coding.

Of course, to make small programs meaningful, they must
dwell in the ancient command-line, text-mode environment.
Graphics are limited. Animation is dull. The excitement,
however, remains—especially when something useful is
presented all within only a few lines of code.

My approach echoes the way I code: start small and grow
the code. So, the programs in this book may begin as only a

https://c-for-dummies.com/blog/

dozen lines of code that output a simple message. From
there the process expands. Eventually a useful program
emerges, all while remaining tiny and tight and teaching
something useful along the way.

Who knows when the mood will hit you and you decide to
code a handy command-line utility to improve your
workflow? With a knowledge of C programming, the desire,
and a few hours of your time, you can make it happen. It’s
my hope that this book provides you with ample inspiration.

acknowledgments

I set out to be a fiction author. At one point, I was engaged
in personal correspondence with a magazine editor who
liked my stuff, but nothing was ever published. Then along
came a job at a computer book publishing house,
CompuSoft. There I combined my self-taught skills in
programming with my love of writing to help craft a series
of technical books. It was there I learned how to write for
beginners and inject humor in the text.

Six years and 20 titles later, I wrote DOS For Dummies,
which revolutionized the computer book publishing industry.
This book showed that technological titles could successfully
impart information to a beginner by using humor. The entire
industry changed, and the For Dummies phenomenon
continues to this day.

Computer books have diminished as an industry, thanks to
the internet and humanity’s disdain for reading printed
material. Still, it’s been a great journey and I have many
people to thank: Dave Waterman, for hiring me at
CompuSoft and teaching me the basics of technical writing;
Bill Gladstone and Matt Wagner, for being my agents; Mac
McCarthy, for the insane idea of DOS For Dummies; and
Becky Whitney, for being my long-time, favorite editor. She
has taught me more about writing than anyone—or perhaps
just taught me how to write in a way that makes her job as
editor easy. I appreciate all of you.

Finally, to all the reviewers: Adam Kalisz, Adhir Ramjiawan,
Aditya Sharma, Alberto Simões, Ashley Eatly, Chris
Kolosiwsky, Christian Sutton, Clifford Thurber, David Sims,
Glen Sirakavit, Hugo Durana, Jean-François Morin, Jeff Lim,
Joel Silva, Joe Tingsanchali, Juan Rufes, Jura Shikin, K. S.
Ooi, Lewis Van Winkle, Louis Aloia, Maciej Jurkowski, Manu
Raghavan Sareena, Marco Carnini, Michael Wall, Mike
Baran, Nathan McKinley-Pace, Nitin Gode, Patrick Regan,
Patrick Wanjau, Paul Silisteanu, Phillip Sorensen, Roman
Zhuzha, Sanchir Kartiev, Shankar Swamy, Sriram Macharla,
and Vitosh Doynov, your input helped make this a better
book.

about this book

Who should read this book?

This book assumes that you have a good knowledge of C.
You don’t need to be an expert, but a raw beginner may
struggle with the pace. Though I explain the techniques
used and my approach for writing these small programs, I
don’t go into detail regarding how the basic aspects of C
work.

The operating system I chose is Linux. Though I’ve run the
code on a Linux box, I developed the programs on Ubuntu
Linux running under Windows 10/11. The programs also run
on a Macintosh. All the programs in this book are text
mode, which requires a terminal window and knowledge of
various shell commands, though nothing too technical or
specific. Chapter 1 covers the details of coding and building
in the command-prompt environment.

Bottom line: this book was written for anyone who loves the
C language, enjoys programming, and takes pleasure from
writing small, useful, and interesting programs.

How this book is organized: A road map

This book is organized into 15 chapters. The first chapter
touches upon configuration and setup to ensure that you
get started properly and are able to code and create the
programs without going nuts.

Chapters 2 through 15 each cover a specific type of
program. The chapter builds upon the program’s idea, often
presenting a simple version and then expanding the
program to offer more features. Sometimes other programs

are introduced along the way, each of which follows the
main theme or otherwise assists the primary program in its
goal.

Software/hardware requirements

Any modern version of a C compiler works with this book.
The code doesn’t touch upon any of the newer C language
keywords. Some functions are specific to the GNU compiler.
These are mentioned in the text, with alternative
approaches available if your C compiler lacks the GNU
extensions.

No third-party libraries are required to build any of the
programs. Variations in Linux distributions or between
Windows 10/11 and macOS play no significant role in
creating the code presented here.

Online resources

My personal C programming website is c-for-dummies.com,
which is updated weekly. I’ve been keeping up my habit of
weekly C language lessons since 2013, each one covering a
specific topic in C programming, offering advice on coding
techniques, and providing a monthly Exercise challenge.
Please check out the blog for up-to-date information and
feedback on C, as well as more details about this book.

I also teach various C programming courses at LinkedIn
Learning. These courses range from beginner level to
advanced topics such as using various C language libraries,

https://c-for-dummies.com/

pointers, and network programming. Visit
www.linkedin.com/learning/instructors/dan-gookin to check
out my courses.

About the code

This book contains many examples of source code both in
numbered listings and in line with normal text. In both
cases, source code is formatted in a fixed-width font
like this to separate it from ordinary text.

In many cases, the original source code has been
reformatted; we’ve added line breaks and reworked
indentation to accommodate the available page space in the
book. In rare cases, even this was not enough, and listings
include line-continuation markers (➥). Additionally,
comments in the source code have often been removed
from the listings when the code is described in the text.
Code annotations accompany many of the listings,
highlighting important concepts.

You can get executable snippets of code from the liveBook
(online) version of this book at
https://livebook.manning.com/book/tiny-c-projects. The
complete code for the examples in the book is available for
download from the Manning website at www.manning.com
and from GitHub at github.com/dangookin/Tiny_C_Projects.

liveBook discussion forum

http://www.linkedin.com/learning/instructors/dan-gookin
https://livebook.manning.com/book/tiny-c-projects/
http://www.manning.com/
https://github.com/dangookin/Tiny_C_Projects

Purchase of Tiny C Projects includes free access to liveBook,
Manning’s online reading platform. Using liveBook’s
exclusive discussion features, you can attach comments to
the book globally or to specific sections or paragraphs. It’s a
snap to make notes for yourself, ask and answer technical
questions, and receive help from the author and other
users. To access the forum, go to
https://livebook.manning.com/book/tiny-c-
projects/discussion. You can also learn more about
Manning’s forums and the rules of conduct at
https://livebook.manning.com/discussion.

Manning’s commitment to our readers is to provide a venue
where a meaningful dialogue between individual readers
and between readers and the author can take place. It is
not a commitment to any specific amount of participation on
the part of the author, whose contribution to the forum
remains voluntary (and unpaid). We suggest you try asking
the author some challenging questions lest his interest
stray! The forum and the archives of previous discussions
will be accessible from the publisher’s website as long as
the book is in print.

about the author

https://livebook.manning.com/book/tiny-c-projects/discussion
https://livebook.manning.com/discussion

D�� G����� has been writing about technology since the
steam-powered days of computing. He combines his love of
writing with his gizmo fascination to craft books that are
informative and entertaining. Having written over 170 titles
with millions of copies in print and translated into more than
30 languages, Dan can attest that his method of creating
computer tomes seems to work.

Perhaps his most famous title is the original DOS For
Dummies, published in 1991. It became the world’s fastest-
selling computer book, at one time moving more copies per
week than the New York Times #1 best-seller list (though
as a reference, it couldn’t be listed on the NYT best-seller

list). From that book spawned the entire line of For
Dummies books, which remains a publishing phenomenon
to this day.

Dan’s popular titles include PCs For Dummies, Android For
Dummies, Word For Dummies, and Laptops For Dummies.
His number-one programming title is C For Dummies,
supported at c-for-dummies.com. Dan also does online
training at LinkedIn Learning, where his many courses cover
a diverse range of topics.

Dan holds a degree in communications/visual arts from the
University of California, San Diego. He resides in the Pacific
Northwest, where he serves as councilman for the city of
Coeur d’Alene, Idaho. Dan enjoys spending his leisure time
gardening, biking, woodworking, and annoying people who
think they’re important.

about the cover illustration

The figure on the cover of Tiny C Projects is captioned
“Femme de la Carniole,” or “Woman from Carniola,” taken
from a collection by Jacques Grasset de Saint-Sauveur,
published in 1797. Each illustration is finely drawn and
colored by hand.

In those days, it was easy to identify where people lived
and what their trade or station in life was just by their
dress. Manning celebrates the inventiveness and initiative of
the computer business with book covers based on the rich

https://c-for-dummies.com/

diversity of regional culture centuries ago, brought back to
life by pictures from collections such as this one.

1 Configuration and setup

This first chapter is purely optional. If you already know how
to build C code, especially if you’re familiar with working at
the command prompt, stop wasting time and merrily skip up
to chapter 2. Otherwise, slug it out and

Review the C language development cycle

Use an integrated development environment (IDE) to
build code

Explore the excitement of command-line programming in
a terminal window, just like Grandpa did
Review options for linking in libraries and supplying
command-line arguments

The purpose of this material is for review, though if you’ve
never used a command line to program, you’re in for a treat:
I find command-line programming to be fast and easy,
specifically for the tiny programs created in this book. This
code is well suited for the command-line environment.

Still reading? Good. This chapter serves as a review when
your C programming skills are rusty or if you just want to
confirm that what you know is up to par for successfully
navigating the rest of the book. I appreciate that you’re still
here. Otherwise, these pages would be blank.

And why do skills get rusty? Is it the iron and oxygen? The
field of computer jargon needs to plant new terms for poor

skills, something highly offensive and obnoxious to the point
of being widely accepted. I’ll ruminate on the topic, and
maybe add a quiz question along these lines at the end of
the chapter.

1.1 The C development cycle

According to ancient Mesopotamian tablets currently on
display in the British Museum, four steps are taken to
develop a C language program. These are illustrated in
figure 1.1, where you can plainly see the C development
cycle written in cuneiform.

Figure 1.1 The C development cycle, courtesy of the British Museum

As a review, and because neither of us knows Babylonian,
here is the translation:

1. Start by creating the source code file.

2. Compile the source code into object code.

3. Link in a library to create a program file.
4. Finally, run the program for testing, disappointment, or

delight.

Step 4 is a rather liberal translation on my part. The original
reads, “Run the program and rejoice by consuming a cow.” I
have also omitted references to pagan deities.

These steps present a simple overview of the process. The
steps are more numerous due to inevitable errors, bugs,
booboos, and lack of cows. The following sections describe
the details.

1.1.1 Editing source code

C language source code is plain text. What makes the file a
C source code file and not a boring ol’ text file is the .c
filename extension; all C source code files use this filename
extension. Eyeball code uses the .see extension. Naval code
uses .sea. Know the difference.

Use a text editor to craft your source code. Do not use a
word processor, which is like using a helicopter to prune a
tree. Don’t let the exciting visual image dissuade you; your
goal is to use the best tool for the job. Any plain-text editor
works, though the good ones offer features like color-coding,
pattern matching, and other swanky features that make the
process easier. I prefer the VIM text editor, which is available
at vim.org. VIM is available as a both a text mode (terminal
window) program and a GUI or windowed version.

https://www.vim.org/

IDEs feature a built-in text editor, which is the point of the I
in IDE: integrated. This editor is what you’re stuck with
unless an option is available to change it. For example, in
Visual Studio Code, you can obtain an extension to bring
your favorite editor commands into the IDE.

As a tip, the .c file extension defines a C language source
code filetype, which is often associated by the operating
system with your IDE. On my system, I associate .c files
with my favorite VIM text editor. This trick allows me to
double-click a C source code file icon and have it open in my
text editor as opposed to having the IDE load.

1.1.2 Compiling, linking, building

After writing the source code, you build the program. This
process combines two original steps that only a handful of
programmers at the Old Coder’s Home remember: compiling
and linking. Most code babies today just think of compiling,
but linking is still in there somewhere.

After the source code file is as perfect as you can imagine,
you compile it into object code: the compiler consumes the
text in the source code file, churns through it, and spews
forth an object code file. Object code files traditionally have
a .o (“dot-oh”) filename extension unless your compiler or
IDE opts for the heretical .obj extension.

Items in your source code that offend the compiler are
flagged as warnings or errors. An error terminates the
process with an appropriately rude but helpful message. A

warning may also thwart the creation of object code, but
often the compiler shrugs its shoulders and creates an object
code file anyway, figuring you’re smart enough to go back
and fix the problem. You probably aren’t, which is why I
admonish you to always take compiler warnings seriously.

Object code is linked or combined with the C library file to
build a program. Any errors halt the process, which must be
addressed by re-editing the source code, compiling, and
linking again.

These days, the original separate steps of compiling and
linking are combined into a single step called building.
Compiling and linking still take place. No matter how many
steps it takes, the result is the creation of a program.

Run the program.

I’m quite nervous when my efforts survive the building
process with no warnings or errors. I’m even more
suspicious when I run the program and it works properly the
first time. Still, it happens. Prepare to be delighted or have
your suspicions confirmed. When things go awry, which is
most of the time, you re-edit the source code file, compile,
link, and run again. In fact, the actual C program
development cycle looks more like figure 1.2.

Figure 1.2 The true nature of the program development cycle. (Image

courtesy of the California Department of Highway Safety.)

For trivia’s sake, the original C compiler in Unix was called
cc. Guess what it stands for?

The original Unix linker was named ld. It probably stands for
“link dis.” The ld program still exists on today’s Linux and
other Unix-like systems. It’s called internally by the compiler
—unless the code is riddled with errors, in which case the
compiler calls its friend Betsy to giggle about how horrible
your C code reads.

Okay. The ld program most likely is short for Link eDitor.
Please stop composing that email now.

1.2 The integrated development

environment (IDE)

Most coders prefer to work in an integrated development
environment, or IDE—this program is software used to
create software, like a toaster that makes toasters but also
makes toast and bread.

The IDE combines an editor, a compiler, and a running
environment in a single program. Using an IDE is a must for
creating GUI programs where you can build graphical
elements like windows and dialog boxes and then add them
to your code without the toil of coding everything by hand.
Programmers love IDEs.

1.2.1 Choosing an IDE

You don’t need an IDE to craft the programs presented in
this course. I suggest that you use the command prompt,
but you’re stubborn and love your IDE—and you’re still
reading—so I’m compelled to write about it.

The IDE I recommend for C programming is Visual Studio
Code, available at code.visualstudio.com. It comes in
Windows, macOS, and Linux flavors.

Visual Studio Code can be overwhelming, so I also
recommend Code::Blocks, available at codeblocks.org. Its
best version is available only for Windows. Ensure that you
obtain a version of Code::Blocks that comes with a compiler.

https://code.visualstudio.com/
https://codeblocks.org/

The default is MinGW, which is nice. Better, get clang for
Windows, which can be obtained at the LLVM website:
llvm.org. You must manually cajole Code::Blocks into
accepting clang as its compiler; details are offered in the
next section.

If you’re using Linux, you already have a compiler, gcc,
which is the default. Even so, I recommend obtaining the
LLVM clang compiler. It’s incredibly sophisticated. It features
detailed error messages plus suggestions for fixing your
code. If I were a robot, I would insist that clang be used to
compile my brain’s software. Use your distro’s package
manager to obtain this superb compiler at once!

1.2.2 Using Code::Blocks

Though I prefer Visual Studio Code, I recommend
Code::Blocks if you’re just starting out. Before you build
your first program in the Code::Blocks IDE, confirm that the
path to the compiler is correct. For a standard installation,
the path is:

C:\Program Files (x86)\CodeBlocks\MinGW\bin

Ensure that this address is specified for Code::Blocks to
locate the default compiler, MinGW, which I just mentioned.
Or, if you’ve disobeyed the setup program’s suggestions, set
the proper path to your compiler. For example, be spicy and
use LLVM clang as your compiler. If so, set the proper path
to that compiler so that Code::Blocks doesn’t barf every
time you click the Build button.

https://llvm.org/

To set the path, heed these directions in Code::Blocks. Don’t
be lazy! The missing compiler error message is one of the
most common email complaint messages I receive from
readers who can’t get Code::Blocks to work. Follow these
steps in Code::Blocks:

1. Choose Settings > Compiler.

2. In the Compiler Settings dialog box, click the Toolchain
Executables tab.

3. Write (or paste) the compiler’s address into the
Compiler’s Installation Directory text box.

4. Click OK.

The IDE should be happy with the compiler after you work
through these steps. If not—yep, you guessed it—get some
cows.

Once the compiler is set, you use Code::Block’s built-in
editor to create your code. The editor uses color-coding,
matches parentheses and other pairs, and features inline
context assistance for C library functions. All good.

After creating—and saving—your source code, Code::Blocks
uses a Build command to compile and link the source code.
Messages are output in another part of the window where
you read whether the operation succeeded or failed.

Figure 1.3 shows the Code::Blocks workspace. Its
presentation can be customized, though in the figure look for
the callout items of the buttons used to build or run or do a
combined build-and-run.

Figure 1.3 Important stuff in the Code::Blocks IDE window

Like all IDEs, Code::Blocks prefers that you create a new
project when you start to code. The process works like this:

1. Click File > New > Project.

2. From the New From Template window, select the
Console Application icon, and then click the Go button.

3. Select C as the programming language, and then click
Next.

4. Type a title for the project, which is also the name of the
project folder tree.

5. Choose the folder in which to create the project.

6. Click Next.

7. Select to create a Release configuration. You don’t need
the Debug configuration unless you plan on using the
Code::Blocks debugger (which is really quite cool, but
no).

8. Click Finish to create the project skeleton.

Code::Blocks spawns all kinds of folders and creates a
prewritten source code file, main.c. You can replace the
contents of this file with your own stuff. I find this entire
process tedious, but it’s how an IDE prefers to work.

As an alternative, you can use the File > New > Empty File
command to open a new source code file in the editor.
Immediately save the file with a .c filename extension to
activate the editor’s nifty features. You can then proceed
with creating an individual program without enduring the
bulk and heft of a full-on project.

Existing files—such as those you steal from GitHub for this
book or for other, nefarious purposes—can be opened
directly. The point of opening any file directly is that you
don’t need the bulk and overhead of creating a project to
create such small programs.

To perform a quick compile and link in Code::Blocks, click
the Build button. This step checks for warnings and errors
but doesn’t run the created program. If things go well, click
the Run button to view the output in a command prompt
window, such as the one shown in figure 1.4.

Figure 1.4 The command prompt window

Close the command prompt window when you’re done.
Remember to do this! A common problem some people have

with Code::Blocks is that they can’t see the output window.
This dilemma most likely occurs because an output window
is already open. Ensure that after test-running your
programs, you close the wee li’l terminal window.

If you’re feeling cocky, you can use the combo Build-and-
Run button (refer to figure 1.3) instead of working through
the separate Build and Run commands. When you click Build
and Run, the code builds and immediately runs, unless you
riddled the thing with errors, in which case you get to fix
them.

1.2.3 Using XCode

The XCode IDE on the Macintosh is a top-flight application
used to build everything from macOS programs to those
teensy apps that run on cell phones and wristwatches for the
terminally hip. You can use this sophisticated tool to write
the simple command-line, text mode utilities offered in this
book. It’s kind of impractical, given the power of XCode, but
this hindrance doesn’t prevent millions of Apple fans from
doing so.

If your Macintosh lacks XCode, you can obtain a copy for
free from the App Store. If prompted, ensure that you
choose to add the command-line tools.

To create a text mode C language project in XCode, heed
these directions:

1. Choose File > New > Project.

2. Select the Command Line Tool template for the project.

3. Click Next.

4. Type a name for the project.

5. Ensure that C is chosen as the language.

6. Click the Next button.

7. Confirm the folder location.
8. Click the Create button.

XCode builds a project skeleton, providing the main.c file,
complete with source code you can gleefully replace with
your own.

Alas, unlike with other IDEs, you cannot open an individual C
source code file and then build and run it within XCode. This
reason is why I recommend using command-line
programming on the Mac, especially for the small, text mode
utilities presented in this book. Refer to the next section.

To build and run in XCode, click the Run icon, shown in
figure 1.5. Output appears in the bottom part of the project
window, as illustrated in the figure.

Figure 1.5 XCode’s window. (Squint to view clearly.)

While the project files may dwell in the folder you chose
earlier in step 7, the resulting program is created and buried
deep within XCode’s folder system. This attempt at
concealment makes it inconvenient for running and testing
command-line programs demonstrated in this book.
Specifically, to set command-line options or perform I/O
redirection at the prompt requires jumping through too
many hoops. To me, this awkwardness makes using XCode
as your IDE an option limited to masochists and the fanatical
Apple type.

1.3 Command-line compiling

Welcome to the early years of computing. It’s nostalgic to
edit, build, and run C programs in text mode, but it works
well and is quite efficient. You must understand how the
command line works, which is something I believe all C
programmers should know innately. Truly, it’s rare to find a C
coder worthy of the title who lacks a knowledge of text mode
programming in Unix or Linux.

1.3.1 Accessing the terminal window

Every Linux distro comes with a terminal window. MacOS
features a terminal program. Even Windows 10 comes with a
command shell, though it’s better to install the Windows
Subsystem for Linux (WSL) and use an Ubuntu bash shell for
consistency with the other platforms. Never have the times
been so good for text mode programming. Crack open a Tab
and kick off your sandals!

To start a terminal window in Linux, look for the Terminal
program on the GUI’s program menu. It may be called
Terminal, Term, Xterm, or something similar.

On the Mac, start the Terminal application, which is
found in the Utilities folder. Access this folder from the
Finder by clicking Go > Utilities from the menu or by
pressing the Shift+Command+U keyboard shortcut.

In Windows 10, open the Microsoft Store and search for
the Ubuntu app. It’s free to download, but to make it
work you must also install the WSL. Directions for
installing the subsystem are splattered all over the
Internet.

The Windows 10 Ubuntu app is shown in figure 1.6. Like all
other terminal windows, it can be customized: you can reset
the font size, the number of rows and columns, screen
colors, and so on. Be aware that the traditional text mode
screen supported 80 columns by 24 rows of text.

Figure 1.6 Linux in Windows—such sacrilege

If you plan on using the terminal window for your program
production, I recommend keeping a shortcut to the Terminal
program available for quick access. For example, in
Windows, I pin a shortcut to the Ubuntu shell on the taskbar.
On the Mac, I have my Terminal window automatically start

each time I sign into OS X. Directions for accomplishing such
tasks are concealed on the internet.

1.3.2 Reviewing basic shell commands

I bet you know a few shell commands. Good. In case doubt
lingers, table 1.1 lists some commands you should be
familiar with to make it easy to work at the command
prompt. These are presented without context or further
information, which helps maintain the command prompt’s
mysterious and powerful aura.

Table 1.1 Shell commands worthy of attention

Command What it does

cd Change to the named directory. When typed without an argument, the

command changes to your home directory.

cp Copy a file.

exit Log out of the terminal window, which may close the window.

ls List files in the current directory.

man Summon the manual page (online documentation) for the named

shell command or C language function. This is the most useful

command to know.

mkdir Make a new directory.

mv Move a file from one directory to another. Also used to rename a file.

pwd Print the current working directory.

unlink Delete the named file.

Each of the commands listed in table 1.1 has options and
arguments, such as filenames and pathnames. Most
everything is typed in lowercase and spelling errors

unforgivable. (Some shells offer spell-check and command
completion.)

Another command to know is make, which helps build larger
projects. This command is covered later in this book. I’d list
a chapter reference, but I haven’t written the chapter yet.

Also important is to know how the package manager works,
though with many Linux distros you can obtain command-
line packages from the GUI package manager. If not,
familiarize yourself with how the command-line package
manager works.

For example, in Ubuntu Linux, use the apt command to
search for, install, update, and remove command-line
software. Various magical options make these things
happen. Oh, and the apt command must be run from the
superuser account; onscreen directions explain the details.

My final recommendation is to understand the file-naming
conventions. Spaces and other oddball characters are easy
to type in a GUI, but at the command prompt, they can be
nettlesome. For the most part, prefix spaces with the
backslash character, \ , which acts as an escape. You can
also take advantage of filename completion: in bash, zsh,
and other shells, type the first part of a filename, and then
press the Tab key to spew out the rest of the name
automatically.

File-naming conventions also cover pathnames. Understand
the difference between relative and absolute paths, which
helps when running programs and managing your files.

I’m sure you can find a good book somewhere to help you
brush up on your Linux knowledge. Here is an obligatory
plug for a tome from Manning Publications: Learn Linux in a
Month of Lunches, by Steven Ovadia (2016). Remember, it’s
free at the library.

1.3.3 Exploring text screen editors

To properly woo the command prompt, you must know how
to use a text mode editor. Many are installed by default with
Linux. Those that aren’t can be obtained from your distro’s
package manager. On the Mac, you can use the Homebrew
system to add text mode programs that Apple deems
unworthy to ship with its operating system; learn more
about Homebrew at brew.sh.

My favorite text mode editor is VIM, the improved version of
the classic vi editor. It has a terminal window version that
runs in text mode as well as a full GUI version. The program
is available for all operating systems.

The thing that ticks off most coders about VIM is that it’s a
modal editor, which means you must switch between text
editing and input modes. This duality drives some
programmers crazy, which is fine by me.

Another popular text mode editor is Emacs. Like VIM, it’s
also available as a text mode editor as well as a GUI editor. I
don’t use Emacs, so I am unable to wax eloquent upon its
virtues.

http://brew.sh/

Whatever text editor you obtain, ensure that it offers C
language color-coding as well as other helpful features like
matching pairs: parentheses, brackets, and braces. With
many editors, it’s possible to customize features, such as
writing a startup script that properly contorts the editor to
your liking. For example, I prefer a four-space tab stop in
my code, which I can set by configuring the .vimrc file in my
home directory.

1.3.4 Using a GUI editor

It may be scandalous, but it’s convenient to use a GUI editor
while you work at the command prompt. This arrangement
is my preferred programming mode: I write code in my
editor’s glorious graphical window and then build and run in
the dreary text mode terminal window. This arrangement
gives me the power of a GUI editor and the ability to
examine text mode output at the same time, as illustrated in
figure 1.7.

Figure 1.7 A desktop with an editor and a terminal window arranged

just so

The only limitation to using a GUI editor is that you must
remember to save the source code in one window before you
build in the other. This reminder isn’t as much of an issue
when you use a text mode editor running in the terminal,
because you save when you quit. But when bouncing
between two different windows on a desktop, it’s easy to
forget to save.

1.3.5 Compiling and running

The command-line compiler in Linux is gcc, which is the GNU
version of the original cc compiler from the caveman days of
Unix. As I wrote earlier, I recommend using the clang
compiler instead of gcc. It offers better error reporting and
suggestions. Use your distro’s package manager to obtain
clang or visit llvm.org. For the remainder of this chapter, as
well as the rest of this book, my assumption is that you use
clang as your compiler.

To build code, which includes both the compiling and linking
steps, use the following command:

clang -Wall source.c

The compiler is named clang. The -Wall switch activates all
warnings—always a good idea. And source.c represents
the source code filename. The command I just listed
generates a program file, a.out, upon success. Warnings
may also yield a program file; run it at your own peril. Error
messages indicate a serious problem you must address; no
program file is generated.

If you desire to set an output filename, use the -o switch
followed by the output filename:

clang -Wall source.c -o program

Upon success, the previous command generates a program
file named program.

https://llvm.org/

The compiler sets the program’s executable bit as well as file
permissions that match those for your account. Once your
program is created, it’s ready to run.

To run the program, you must specify its full pathname.
Remember that in Linux, unless the program exists in a
directory on the search path, a full pathname must be
specified. For programs in the current directory, use the ./
prefix, like so:

./a.out

This command runs the program file a.out, located in the
current directory, as shown here:

./cypher

This command runs the program name cypher, again
located in the current directory.

The single dot is an abbreviation for the current directory.
The slash separates the pathname from the filename.
Together, the ./ forces the shell to locate and run the
named program in the current directory. Because the
program’s executable bit is set, its binary data is loaded into
memory and executed.

1.4 Libraries and compiler options

As someone who aspires to improve the craft, you must be
aware of the assortment of compiler options—specifically,
those that link in libraries. These libraries expand a mere
mortal C program into realms of greater capabilities.

All C programs link in the standard C library. This library
contains the horsepower behind such functions as printf().
Yet, it’s a common misconception among beginning C
programmers that it’s the header file that contains the
oomph. Nope. The linker builds the program by combining
object code (created by the compiler) with a C language
library.

Other libraries are also available, which are linked in addition
to the standard C library to build complex and interesting
programs. These libraries add more capabilities to your
program, providing access to the internet, graphics, specific
hardware, and a host of other useful features. Hundreds of
libraries are available, each of which helps extend your
program’s potential. The key to using these libraries is to
understand how they’re linked in, which also raises the issue
of compiler options or command-line switches.

As you may expect, methods of adding options and linking
libraries differ between the IDE and command prompt
approaches to creating programs.

1.4.1 Linking libraries and setting other options in

an IDE

One area where using an IDE becomes inconvenient is the
task of setting compiler options or specifying command-line
arguments. Setting the options includes linking in a library.
You must not only discover where the linking option is
hidden but also confirm the location of the library on the
filesystem and ensure that it’s compatible with the compiler.

I don’t have the time, and it’s really not this book’s subject,
to get into specifics for each IDE and how they set
command-line arguments for the programs you build or how
specific options are set, such as linking in an extra compiler.
After all, I push command-line programming enough—get
the hint! But if you insist, or you just enjoy seeing how
difficult things can be, read on. For brevity’s sake, I’ll stick
with Code::Blocks because I know it best. Other IDEs have
similar options and settings. I hope.

Compiler options in Code::Blocks are found in the Settings
dialog box: click Settings > Compiler to view the dialog box,
shown in figure 1.8. This is the same location where you
specify another library to link.

Figure 1.8 Finding useful stuff in the Code::Blocks’ Settings dialog box

Preset options are listed on the Compiler Flags tab,
illustrated in figure 1.8. This tab is a subtab of the Compiler
Settings tab, also called out in the figure. The command-line
switches for each option are shown at the end of the
descriptive text.

Use the Other Compiler Options tab to specify any options
not found on the Compiler Flags tab. I can’t think of any
specific options you might consider adding, but this tab is
where they go.

Click the Linker Settings tab (refer to figure 1.8) to add
libraries. Click the Add button to browse for a library to link
in. You must know the folder in which the library file dwells.
Unlike command-line compiling, default directories for library
files aren’t searched automatically. Ditto for header files,
which are often included in the same directory tree as the
libraries.

To specify command-line arguments for your programs in
Code::Blocks, use the Project > Set Programs’ Arguments
command. The problem here is that the apostrophe is
misplaced on the menu; it should read Program’s. I mention
this because my editor will query me otherwise.

After choosing the grammatically incorrect Set Programs’
Arguments command, you see the Select Target dialog box.
Use the Program Arguments text field to specify required
arguments for the programs you run in the IDE. The
limitation here is that your command-line program must be
built as a project in Code::Blocks. Otherwise, the option to
set command-line arguments is unavailable.

Please be aware that the tiny programs presented in this
book are designed to run at the command prompt, which
makes it weird to set arguments in an IDE. Because the IDE
creates a program, you can always navigate to the program
folder to run the program directly at a command prompt. If

possible, discover whether your IDE allows you quick access
to the folder containing the program executable. Or just
surrender to the inevitable ease and self-fulfilling joy of
programming in a terminal window.

1.4.2 Using command-line compiler options

It’s easy and obvious to type compiler options and program
arguments at a command prompt in a terminal window: no
extra settings, menus, mouse clicks, or other options to hunt
for. Again, these are many of the reasons programming at
the command prompt makes sense for the programs
presented in this book, as well as for lots of tiny C projects.

Of the slate of command-line options, one worthy of note is
-l (little L). This switch is used to link in a library. The -l is
followed immediately by the library name, as in:

clang -Wall weather.c -lcurl

Here, the libcurl library, named curl, is linked along with
the standard C library to build a program based on the
weather.c source code file. (You don’t need to specify the
standard C library, because it’s linked in by default.)

To specify an output filename, use the -o switch as covered
earlier in this chapter:

clang -Wall weather.c -lcurl -o weather

With some compilers, option order is relevant. If you see a
slew of linker errors when using the -l switch, change the
argument order to specify -l last:

clang -Wall weather.c -o weather -lcurl

At the command line, the compiler searches default
directories for locations of library files as well as header files.
In Unix and Linux—but not OS/X—these locations follow:

Header files: /usr/include

Library files: /usr/lib

Custom library and header files you install can be found at
these locations:

Header files: /usr/local/include

Library files: /usr/local/lib

The compiler automatically searches these directories for
header files and libraries. If the library file exists elsewhere,
you specify its pathname after the -l switch.

No toil is involved in specifying command-line arguments for
your programs. Unlike an IDE, the arguments are typed
directly after the program name:

./weather KSEA

Here, the weather program runs in the current directory with
a single argument, KSEA. Simple. Easy. I shan’t use further

superlatives.

1.5 Quiz

I decided against adding a quiz.

2 Daily greetings

Your computer day starts when you sign in. The original
term was log in, but because trees are so scarce and signs
are so plentiful, the term was changed by the Bush
administration in 2007. Regardless of such obnoxious federal
overreach, your computer day can start with a cheerful
greeting after you sign in or open a terminal window,
customized by a tiny C program. To make it so, you will:

Review the Linux startup process.

Discover where in the shell script to add your greeting.

Write a simple greetings program.

Modify your greetings program to add the time of day.

Update the timestamp with the current moon phase.
Enhance your greetings message with a bon mot.

The programs created and expanded upon in this chapter
are specific to Linux, macOS, and the Windows Subsystem
for Linux (WSL), where a startup script is available for
configuring the terminal window. A later section explains
which startup scripts are available for the more popular
shells. This chapter doesn’t go into creating a daily greeting
message when the GUI shell starts.

I suppose you could add a startup message for the Windows
terminal screen, the command prompt. It’s possible, but the
process bores me, and only hardcore Windows nerds would

care, so I’m skipping the specifics. The greetings programs
still run at the Windows command prompt, if that’s your
desire. Otherwise, you may lodge your complaints with me
personally; my email address is found in this book’s
introduction. I promise not to answer a single email from a
whiny Windows user.

2.1 The shell starts

Linux has a long, involved, and thoroughly exciting boot
process. I’m certain that you’re eager to read all the nitty-
gritty details. But this book is about C programming. You
must seek out a Linux book to know the complete, torrid
steps involved with rousing a Linux computer. The exciting
stuff relevant to creating a daily greeting happens later, after
the operating system completes its morning routine, when
the shell starts.

2.1.1 Understanding how the shell fits in

Each user account on a Linux system is assigned a default
shell. This shell was once the only interface for Linux. I recall
booting into an early version of Red Hat Linux back in the
1990s and the first—and only—thing I saw was a text mode
screen. Today things are graphical, and the shell has been
shunted off to a terminal window. It’s still relevant at this
location, which is great for C programming.

The default shell is configured by the something-or-other.
I’m too lazy to write about it here. Again, this isn’t a Linux

book. Suffice it to say that your account most likely uses the
bash shell—a collision of the words “Bourne again shell,” so
my writing “bash shell” is redundant (like ATM machine), but
it looks awkward otherwise.

To determine the default shell, start a terminal window. At
the prompt, type the command echo $SHELL:

$ echo $SHELL
/bin/bash

Here, the output confirms that the assigned user shell is
bash. The $SHELL argument represents the environment
variable assigned to the startup shell, which is /bin/bash
here. This output may not reflect the current shell—for
example, if you’ve subsequently run the sh or zsh or similar
command to start another shell.

To determine the current shell, type the command ps -p $$:

$ ps -p $$
 PID TTY TIME CMD
 7 tty1 00:00:00 bash

This output shows the shell command is bash, meaning the
current shell is bash regardless of the $SHELL variable’s
assignment.

To change the shell, use the chsh command. The command
is followed by the new shell name. Changing the shell affects
only your account and applies to any new terminal windows

you open after issuing the command. That’s enough Linux
for today.

2.1.2 Exploring various shell startup scripts

When a shell starts, it processes commands located in
various startup scripts. Some of these scripts may be global,
located in system directories. Others are specific to your
account, located locally in your home folder.

Startup scripts configure the terminal. They allow you to
customize the horrid text-only experience, perhaps adding
colors, creating shortcuts, and performing various tasks you
may otherwise have to manually perform each time a
terminal window opens. Any startup script file located in
your home directory is yours to configure.

Given all that, the general advice is not to mess with startup
shell scripts. To drive home this point, the shell script files
are hidden in your home directory. The filenames are
prefixed with a single dot. The dot prefix hides files from
appearing in a standard directory listing. This stealth allows
the files to be handy yet concealed from a casual user’s
attempts to meddle with them.

Because you want to meddle with the shell startup script,
specifically to add a personalized greeting, it’s necessary to
know the script names. These names can differ, depending
upon the shell, though the preferred startup script to edit
appears in table 2.1.

Table 2.1 Tediously dry info regarding Linux shell scripts

Shell Name Command Startup filename

Bash Bash, “Bourne

again shell”

/bin/bash .bash_profile

Tsch Tee C shell /bin/tsch .tcshrc

Csh C shell /bin/csh .cshrc

Ksh Korn shell /bin/ksh .profile

Sh Bourne shell /bin/sh .profile

Zsh Z shell /bin/zsh .zshrc

For example, for the bash shell, I recommend editing the
startup script .bash_profile to add your greeting. Other
startup scripts may run when the shell starts, but this is the
script you can modify.

To view your shell’s startup script, use the cat command in a
terminal window. Follow the command with the shell’s
startup filename. For example:

$ cat ~/.bash_profile

The ~/ pathname is a shortcut for your home directory.
After you issue the preceding command, the contents of the
shell startup script vomit all over the text screen. If not, the
file may not exist and you need to create it.

When you see the file’s contents, somewhere in the morass
you can stick your greetings program on a line by itself. The
rest of the script shouldn’t be meddled with—unless you’re
adept at coding in the scripting language and crafting
brilliant startup scripts, which you probably aren’t.

2.1.3 Editing the shell startup script

Shell startup scripts are plain text files. They consist of shell
commands, program names, and various directives, which
makes the script work like a programming language. The
script is edited like any text file.

I could wax eloquent for several pages about shell scripting,
but I have a dental appointment in an hour and this book is
about C programming. Still, you should note two relevant
aspects of a startup shell script: the very first line and the
file’s permissions.

To interpret the lines of text in a startup script, the very first
line of the file directs the shell to use a specific program to
process the remaining lines in the file. Traditionally, the first
line of a Unix shell script is:

#!/bin/sh

This line starts with the #, which makes it a comment. The
exclamation point, which the cool kids tell me is pronounced
“bang,” directs the shell to use the /bin/sh program (the
original Bourne shell) to process the remaining lines of text
in the file. The command could be anything, from a shell like
bash to a utility like expect.

All shell scripts have their executable permissions bit set. If
the file exists, this setting is already made. Otherwise, if
you’re creating the shell script, you must bless it with the
executable bit after the file is created. Use the chmod

command with the +x switch, followed by the script
filename:

chmod +x .bash_profile

Issuing this command is required only when you initially
create the script.

Within the startup script, my recommendation is to set your
greetings program on a line by itself at the end of the script.
You can even prefix it with a comment, starting the line
before with the # character. The cool kids have informed me
that # is pronounced “hash.”

For practice, edit the terminal window’s startup script: open
a terminal window and use your favorite text editor to open
the shell’s startup script, as noted in table 2.1. For example,
on my Linux system, I type:

vim ~/.bash_profile

Add the following two lines at the bottom of the script, after
all the stuff that looks impressive and tempting:

startup greetings
echo "Hello" $LOGNAME

The first line is prefixed with a #. (I hope you said “hash” in
your head.) This tag marks the line as a comment.

The second line outputs the text "Hello" followed by the
contents of environment variable $LOGNAME. This variable

represents your login account name.

Here’s sample output:

Hello dang

My account login is dang, as shown. This line of text is the
final output generated by the shell startup script when the
terminal window first opens. The C programs generated for
the remainder of this chapter replace this line, outputting
their cheerful and interesting messages.

When adding your greetings program to the startup script,
it’s important that you specify its pathname, lest the shell
script interpreter freak out. The path can be full, as in:

/home/dang/cprog/greetings

Or it can use the ~/ home directory shortcut:

~/cprog/greetings

In both cases, the program is named greetings, and it
dwells in the cprog directory.

2.2 A simple greeting

All major programming projects start out simple and have a
tendency to grow into complex, ugly monsters. I’m certain
that Excel began its existence as a quick-and-dirty, text
mode calculator—and now look at it. Regardless, it’s good

programming practice not to begin a project by coding
everything you need all at once. No, it’s best to grow the
project, starting with something simple and stupid, which is
the point of this section.

2.2.1 Coding a greeting

The most basic greetings program you can make is a simple
regurgitation of the silly Hello World program that ushers in
the pages of every introductory C programming book since
Moses. Listing 2.1 shows the version you could write for your
greetings program.

Listing 2.1 Source code for greet01.c

#include <stdio.h>

int main()
{
 printf("Hello, Dan!\n");

 return(0);
}

Don’t build. Don’t run. If you do, use this command to build
a program named greetings:

clang -Wall greet01.c -o greetings

You may substitute clang with your favorite-yet-inferior
compiler. Upon success, the resulting program is named
greetings. Set this program into your shell’s startup
script, adding the last line that looks like this:

greetings

Ensure that you prefix the program name with a pathname—
either the full pathname, like this:

/home/dang/bin/greetings

or a relative pathname:

~/bin/greetings

The startup script cannot magically locate program files,
unless you specify a path, such as my personal ~/bin
directory shown in the examples. (I also use my shell
startup script to place my personal ~/bin directory on the
search path—another Linux trick found in another book
somewhere.)

After the startup script is updated, the next terminal window
you open runs a startup script that outputs the following
line, making your day more cheerful:

Hello, Dan!

And if your name isn’t Dan, then the greeting is more
puzzling than cheerful.

2.2.2 Adding a name as an argument

The initial version of the greetings program is inflexible.
That’s probably why you didn’t code it and are instead eager

to modify it with some customization.

Consider the modest improvement offered in listing 2.2. This
update to the code allows you to present the program with
an argument, allowing it to be flexible.

Listing 2.2 Source code for greet02.c

#include <stdio.h>

int main(int argc, char *argv[])
{

 if(argc<2) ❶
 puts("Hello, you handsome beast!");
 else

 printf("Hello, %s!\n",argv[1]); ❷

 return(0);
}

❶ The argument count is always 1 for the program name; if so, a default message is output.

❷ The first word typed after the program name is represented as argv[1] and is output here.

Build this code into a program and thrust it into your shell’s
startup script as written in the ancient scrolls but also in the
preceding section:

greetings Danny

The program now outputs the following message when you
open a new terminal window:

Hello, Danny!

This new message is far more cheerful than the original but
still begging for some improvement.

2.3 The time of day

One of the first programs I wrote for my old DOS computer
greeted me every time I turned on the computer. The
program was similar to those created in the last two
sections, which means it was boring. To spice it up, and
inspired by my verbal interactions with humans I encounter
in real life, I added code to make the greeting reflect the
time of day. You can do so as well with varying degrees of
accuracy.

2.3.1 Obtaining the current time

Does anyone really know what time it is? The computer can
guess. It keeps semi-accurate time because it touches base
with an internet time server every so often. Otherwise, the
computer’s clock would be off by several minutes every day.
Trust me, computers make lousy clocks, but this truth
doesn’t stop you from plucking the current time from its
innards.

The C library is rife with time functions, all defined in the
time.h header file. The time_t data type is also defined in
the header. This positive integer value (long data type,
printf() placeholder %ld) stores the Unix epoch, the number
of seconds ticking away since midnight January 1, 1970.

The Unix epoch is a great value to use in your greetings
program. For example, imagine your joy at seeing—every

day when you start the terminal—the following jolly
message:

Hello, Danny, it's 1624424373

Try to hold back any emotion.

Of course, the time_t value must be manipulated into
something a bit more useful. Listing 2.3 shows some sample
code. Be aware that many time functions, such as time()
and ctime() used in the code for time01.c, require the
address of the time_t variable. Yup, they’re pointers.

Listing 2.3 Source code for time01.c

#include <stdio.h>

#include <time.h> ❶

int main()
{
 time_t now;

 time(&now); ❷
 printf("The computer thinks it's %ld\n",now);

 printf("%s",ctime(&now)); ❸

 return(0);
}

❶ The time.h header file is required, lest the compiler become cross with you.

❷ The time() function requires the time_t variable’s address, prefixed here with the & address-

of operator.

❸ The ctime() function requires a pointer argument and returns a string appended with a

newline.

Here is sample output from the resulting program:

The computer thinks it's 1624424373
Tue Jun 22 21:59:33 2021

The output shows the number of seconds of tick-tocking
since 1970. This same value is swallowed by the ctime()
function to output a formatted time string. This result may
be acceptable in your greetings program, but time data can
be customized further. The key to unlocking specific time
details is found in the localtime() function, as the code in
listing 2.4 demonstrates.

Listing 2.4 Source code for time02.c

#include <stdio.h>
#include <time.h>

int main()
{
 time_t now;

 struct tm *clock; ❶

 time(&now);
 clock = localtime(&now);
 puts("Time details:");
 printf(" Day of the year: %d\n",clock->tm_yday);

 printf(" Day of the week: %d\n",clock->tm_wday); ❷

 printf(" Year: %d\n",clock->tm_year+1900); ❸

 printf(" Month: %d\n",clock->tm_mon+1); ❹
 printf("Day of the month: %d\n",clock->tm_mday);
 printf(" Hour: %d\n",clock->tm_hour);
 printf(" Minute: %d\n",clock->tm_min);
 printf(" Second: %d\n",clock->tm_sec);

 return(0);
}

❶ Because localtime() returns a pointer, it’s best to declare the structure as a pointer.

❷ The first day of the week is 0 for Sunday.

❸ You must add 1900 to the tm_year member to get the current year; you will forget this.

❹ The tm_mon member ranges from 0 to 11.

I formatted the code in listing 2.4 with oodles of spaces so
that you could easily identify the tm structure’s members.
These variables represent the time tidbits that the
localtime() function extracts from a time_t value. Ensure
that you remember to adjust some values as shown in listing
2.4: the year value tm_year must be increased by 1900 to
reflect the current, valid year; the month value tm_mon
starts with zero, not one.

The output is trivial, so I need not show it—unless you send
me a check for $5. Still, the point of the code is to show how
you can obtain useful time information with which to
properly pepper your terminal greetings.

2.3.2 Mixing in the general time of day

The program I wrote years ago for my DOS computer was
called GREET.COM. It was part of my computer’s
AUTOEXEC.BAT program, which ran each time I started my
trusty ol’ IBM PC. Because I’m fond of nostalgia, I’ve kept a
copy of the program. Written in x86 Assembly, it still runs
under DOSBox. Ah, the sweet perfume of the digital past.
Smells like ozone.

Alas, I no longer have the source code for my GREET.COM
program. From memory (and disassembly), I see that the
code fetches the current hour of the day and outputs an
appropriate time-of-day greeting: good morning, good
afternoon, or good evening. You can code the same trick—

though in C for your current computer and not in x86
Assembly for an ancient IBM PC.

Pulling together resources from the first chunk of this
chapter, listing 2.5 shows a current version of my old
greetings program.

Listing 2.5 Source code for greet03.c

#include <stdio.h>
#include <time.h>

int main(int argc, char *argv[])
{
 time_t now;
 struct tm *clock;
 int hour;

 time(&now);
 clock = localtime(&now);

 hour = clock->tm_hour; ❶

 printf("Good ");

 if(hour < 12) ❷
 printf("morning");

 else if(hour < 17) ❸
 printf("afternoon");

 else ❹
 printf("evening");

 if(argc>1) ❺
 printf(", %s",argv[1]);

 putchar('\n');

 return(0);
}

❶ This statement is a convenience to avoid using clock->tm_hour over and over.

❷ Before noon, say “Good morning.”

❸ From noon to 5:00 P.M., say “Good afternoon.”

❹ Otherwise, it’s evening.

❺ Check for and output the first command-line argument.

Assuming that the built program is named greetings, that
the user types in Danny as the command-line argument,
and that it’s 4 o’clock in the afternoon, here is the code’s
output:

Good afternoon, Danny

This code effectively replicates what I wrote decades ago as
my GREET.COM program. The output is a cheery, time-
relevant greeting given the current time of day.

For extra humor, you can add a test for early hours, such as
midnight to 4:00 AM. Output some whimsical text such as
“Working late?” or “Are you still up?” Oh, the jocularity! I
hope your sides don’t hurt.

2.3.3 Adding specific time info

Another way to treat yourself when you open a terminal
window is to output a detailed time string. The simple way to
accomplish this task is to output the greeting followed by a
time string generated by the ctime() function. Here are the
two relevant lines of code:

printf(“Good day, %s\n”,argv[1]);
printf(“It’s %s”,ctime(&now));

These two statements reflect code presented earlier in this
chapter, so you get the idea. Still, the program is lazy. Better

to incorporate the strftime() function, which formats a
timestamp string according to your specifications.

The strftime() function works like printf(), with a special
string that formats time information. The function’s output is
saved in a buffer, which your code can use later. The code
shown in listing 2.6 demonstrates.

Listing 2.6 Source code for greet04.c

#include <stdio.h>
#include <time.h>

int main(int argc, char *argv[])
{
 time_t now;
 struct tm *clock;

 char time_string[64]; ❶

 time(&now);

 clock = localtime(&now); ❷

 strftime(time_string,64,"Today is %A, %B %d, %Y%nIt is %r%n",clock);

 printf("Greetings");
 if(argc>1)
 printf(", %s",argv[1]);
 printf("!\n%s",time_string);

 return(0);
}

❶ Storage for the string filled by the strftime() function

❷ You must fill a localtime() tm structure to make the strftime() function work.

You can review the man page for strftime() to discover all
the fun placeholders and what they do. Like the printf()
function, the placeholders are prefixed by a % character. Any
other text in the formatting string is output as is. Here are
the highlights from the strftime() statement in listing 2.6:

The output reflects the time string generated and stored in
the time_string[] buffer. The time string appears after
the general greeting as covered earlier in this chapter:

Greetings, Danny!
Today is Wednesday, June 23, 2021
It is 04:24:47 PM

At this point, some neckbeard might say that all this output
can easily be accomplished by using a shell scripting
language, which is the native tongue of the shell startup and
configuration file anyway. Yes, such people exist. Still, as a C
programmer, your job is to offer more insight and power to
the greeting. Such additions aren’t possible when using a
sad little shell scripting language. So there.

2.4 The current moon phase

My sense is that most programmers operate best at night.
So why bother programming a moon phase greeting when
you can just pop your head out a window and look up?

You’re correct: the effort is too much trouble, especially
when you can write a C program to get a good
approximation of the moon phase while remaining safely
indoors. You can even delight yourself with this interesting
tidbit every time you start a terminal window. Outside? It’s
overrated.

2.4.1 Observing moon phases

The ancient Mayans wrote the first moon phase algorithm,
probably in COBOL. I’d print a copy of the code here, but it’s
just easier to express the pictogram: it’s a little guy
squatting on a rock, extending a long tongue, wearing a
festive hat, and wearing an angry expression on his face.
Programmers know this stance well.

The moon goes through phases as it orbits the Earth. The
phases are based on how much of the moon is exposed to
sunlight as seen from Earth. Figure 2.1 illustrates the moon’s
orbit. The sunny side always faces the sun, though from the
Earth we see different portions of the moon illuminated.
These are the moon’s phases.

Figure 2.1 The moon’s orbit affects how much of the illuminated side is

visible from Earth.

The phases as they appear from an earthling’s perspective
are named and illustrated in figure 2.2. During its 28-day

journey, the moon’s phase changes from new (no
illumination) to full and back to new again. Further, half the
time, the moon is visible (often barely) during daylight
hours.

Figure 2.2 Moon phases as seen from Earth

The phases shown in figure 2.2 follow the moon’s progress
from new to full and back again. The latter waning phases
happen in the morning, which is why they’re only popular
with men named Wayne.

2.4.2 Writing the moon phase algorithm

Without looking outside right now, can you tell the moon
phase?

Yes, I assume that you’re reading this book at night.
Programmers are predictable. Congratulations if you’re
reading this book during the day—outside, even. Regardless
of the time, the moon has a current phase. Not a moody
teenager phase, but one of the moon how-much-is-
illuminated thingies covered in the preceding section.

To determine the moon phase without looking outside or in a
reference, you use an algorithm. These are abundant and
available on the internet as well as carved into Mayan
tablets. The key is the moon’s predictable cycle, which can
be mapped to days, months, and years. The degree of
accuracy of the algorithm depends on a lot of things, such as
your location and the time of day. And if you want to be
exact, you must use complex geometry and messy stuff I
don’t even want to look at through one eye half-shut.

Listing 2.7 shows the moon_phase() function. It contains an
algorithm I found years ago, probably on the old ARPANET.
My point is: I don’t know where it came from. It’s mostly
accurate, which is what I find of typical moon phase
algorithms that don’t use complex and frightening math
functions.

Listing 2.7 The moon_phase() function

int moon_phase(int year,int month,int day)
{
 int d,g,e;

 d = day;
 if(month == 2)
 d += 31;
 else if(month > 2)
 d += 59+(month-3)*30.6+0.5;
 g = (year-1900)%19;
 e = (11*g + 29) % 30;
 if(e == 25 || e == 24)
 ++e;
 return ((((e + d)*6+5)%177)/22 & 7);
}

The algorithm presented in listing 2.7 requires three
arguments: the integers year, month, and day. These are

the same as values found in the members of a localtime()
tm structure: tm_year+1900 for the year, tm_mon for the
month (which starts with 0 for January), and tm_day for the
day of the month, starting with 1.

Here’s how I’m going to explain how the algorithm works:
I’m not. Seriously, I have no clue what’s going on. I just
copied down the formula from somewhere and—by golly—it
mostly works. Mostly.

Insert the code from listing 2.7 into your favorite greetings
program. If you paste it in above the main() function, it
won’t require a prototype. Otherwise, prototype it as:

int moon_phase(int year,int month,int day);

The function returns an integer in the range of 0 to 7
representing the eight moon phases shown earlier in figure
2.2, and in that order. An array of strings representing these
phases, matching up to the value returned by the
moon_phase() function, looks like this:

char *phase[8] = {
 "waxing crescent", "at first quarter",
 "waxing gibbous", "full", "waning gibbous",
 "at last quarter", "waning crescent", "new"
};

You can craft the rest of the code yourself. I’ve included it as
moon.c in this book’s code repository as described in the
introduction, which you haven’t read.

With this knowledge in hand, you can easily add the moon
phase as output to your terminal program’s initial greeting.
One thing you don’t want to do, however, is use this moon
phase algorithm to accurately predict the moon phase.
Seriously, it’s for fun only. Don’t use this algorithm to launch
a manned rocket to the moon. I’m looking at you, Italy.

2.4.3 Adding the moon phase to your greeting

You can add the moon_phase() function to any of the source
code samples for the greetings series of programs listed in
this chapter. You need to fetch time-based data, which the
moon_phase() function requires to make its calculation. You
also need an array of strings to output the current moon
phase text based on the value the function returns.

Listing 2.6, showing the greet04.c source code, is the best
candidate for modification. Make the following changes:

Add a declaration in the main() function for integer variable
mp to hold the value returned from the moon_phase()
function:

int mp;

Add the following two statements after the last printf()
statement in the existing code, just before the return:

mp = moon_phase(clock->tm_year+1900,clock->tm_mon,clock->tm_mday);
printf("The moon is %s\n",phase[mp]);

You could combine these statements into a single printf()
statement, eliminating the need for the mp variable: Insert
the moon_phase() function call (the first line) into the
brackets in the printf() statement. The result is a painfully
long line of code, which is why I split it up. I’d choose
readability over a long line of code any day.

A final copy of greet05.c can be found in this book’s
GitHub repository. Here is sample output:

$ greetings Danny
Greetings, Danny!
Today is Thursday, June 24, 2021
It is 10:02:33 PM
The moon is full

Imagine the delight your users will have, seeing such a
meaty message at the start of their terminal window day.
They’ll lean back and smile, giving a thankful nod as they
say, “I appreciate the scintillating details, my programmer
friend. Glad I don’t have to venture outside tonight. Thank
you.”

2.5 A pithy saying

The fortune program has been a staple of shell startup
scripts since the old days, back when some Unix terminals
were treadle powered. It remains available today, easily
installed from your distro’s package manager; search for
“fortune.”

The name “fortune” comes from the fortune cookie. The idea
is to generate a pithy saying, or bon mot, which you can use
as fresh motivation to start your day. These are inspired by
the desserts provided at some Chinese restaurants, which
serve the purpose of holding down the paper ticket more
than they provide any nutritional value.

Here is an example of a digital fortune cookie, output from
the fortune program:

$ fortune
There is no logic in the computer industry.
 --Dan Gookin

It’s possible to replicate the fortune program output,
providing you have a database of pithy sayings and a
program eager to pluck out a random one.

2.5.1 Creating a pithy phrase repository

The fortune program comes with one or more databases of
witticisms. It’s from this database that the fortune cookie
message is retrieved and output on the screen. You could
borrow from this list, but that’s cheating. It’s also silly,
because the fortune program is already written. You’d
learn nothing. For shame!

Your goal is to write your own version of the pithy phrase
database. It need not be quotes or humor, either. The list
could contain tips about using the computer, reminders

about IT security, and other important information, like the
current, trendy hairstyles.

I can imagine several ways to configure the list. This
planning is vital to writing good code: a well-organized list
means you have less coding to do. The goal is to pluck a
random phrase from the repository, which means an
organized file is a must. Figure 2.3 outlines the process for
writing code to pluck a random, pithy phrase from a list or
database.

Figure 2.3 The process for reading a random, pithy quote from a file

I can imagine several approaches to formatting the file, as
covered in table 2.2.

Table 2.2 Approaches to storing sayings for easy access

File format/data Pros Cons

Basic text file Simple to maintain using

existing tools

The file must be read

and indexed every time

the program runs.

Formatted file with an

initial item count

reflecting the number of

entries

Item count can be read

instantly

The item count must be

updated as the list is

modified.

Hash table with indexed

entries

Easy to read and access

each record

You will most likely need

a separate program to

maintain the list, which

is more coding to do.

I prefer the basic text file for my list, which means more
overhead is required in order to fetch a random entry. It also
means that I don’t need to write a list maintenance
program. Another benefit is that anyone can edit the sayings
file, adding and removing entries at their whim.

Eschewing all other options, my approach is to read the file
a line at a time, storing and indexing each line in memory.
The file needs to be read only once with this method, so it’s
what I choose to do. The downside? I must manage memory
locations, also known as pointers.

Fret not, gentle reader.

The bonus of my approach (forgetting pointers for the
moment) is that you can use any text file for your list. Files
with short lines of text work best; otherwise, you must wrap
the text on the terminal screen, which is more work. The file
pithy.txt can be found in this book’s GitHub repository.

2.5.2 Randomly reading a pithy phrase

My pithy-phrase greetings program reads lines of text from
the repository file, allocating storage space for each string
read. As the lines are read and stored, an index is created.
This index is a pointer array, but one created dynamically by
allocating storage as the file is read. This approach is
complex in that it involves those horrifying pointer-pointer
things (two-asterisk notation) and liberal use of the malloc()
and realloc() function. I find such activity enjoyable, but I
also enjoy natto. So there.

As with any complex topic in programming, the best way to
tackle the project is to code it one step at a time. The first
step is to read a text file and output its contents. The code
in listing 2.8 accomplishes this first task by reading lines of
text from the file pithy.txt. Remember, this code is just
the start. The pointer insanity is added later.

Listing 2.8 Source code for pithy01.c

#include <stdio.h>
#include <stdlib.h>

#define BSIZE 256

int main()
{

 const char filename[] = "pithy.txt"; ❶
 FILE *fp;

 char buffer[BSIZE]; ❷
 char *r;

 fp = fopen(filename,"r");
 if(fp==NULL)
 {
 fprintf(stderr,"Unable to open file %s\n",filename);
 exit(1);

 }

 while(!feof(fp)) ❸
 {

 r = fgets(buffer,BSIZE,fp); ❹
 if(r==NULL)
 break;

 printf("%s",buffer); ❺
 }

 fclose(fp);

 return(0);
}

❶ The file pithy.txt is assumed to be in the same directory as the program.

❷ The buffer is used to read text from the file; the size is a guess, set as defined constant

BSIZE (line 4).

❸ Loops as long as the file isn’t empty

❹ The variable r ensures that fgets() doesn’t mess up and read beyond the end of the file; if so,

the loop stops.

❺ Outputs all the lines in the file

The purpose of pithy01.c is to read all the lines from the
file. That’s it. Each line is stored in char array buffer[]
and then output. The same buffer is used over and over.

The program’s output is a dump of the contents of file
pithy.txt. For a release program, your code must ensure
that the proper path to pithy.txt (or whatever file you
choose) is confirmed and made available.

Build and run to prove it works. Fix any problems. When it’s
just right, move on to the next step: use a pointer and
allocate memory to store the strings read. Remember, the
final program stores all the file’s strings in memory. Because

the number of strings is unknown, this allocation method
works better than guessing an array size.

To proceed with the next improvement, a new variable entry
is introduced. It’s a char pointer, which must be allocated
based on the size of the line read from the file. Once
allocated, the contents of buffer[] are copied into the
memory chunk referenced by pointer entry. It’s this string
that’s output, not the contents of buffer[].

Another improvement is to count the number of items read
from the file. For this task, the int variable items is added,
initialized, and incremented within the while loop.

Here are the updates to the code: Add a line to include the
string.h header file, required for the strcpy() function:

#include <string.h>

In the variable declarations part of the code, add char
pointer entry and int variable items:

char *r,*entry;
int items;

Before the while loop, initialize variable items to zero:

items = 0;

Within the while loop, memory is allocated for variable
entry. The pointer must be tested to ensure memory is

available. Then the contents of buffer[] are copied to
entry, the contents of entry output, and the items
variable incremented. Here is the chunk of code to replace
the existing printf() statement in the original program:

entry = (char *)malloc(sizeof(char) * strlen(buffer)+1); ❶
if(entry==NULL)
{
 fprintf(stderr,"Unable to allocate memory\n");
 exit(1);
}
strcpy(entry,buffer);
printf("%d: %s",items,entry);
items++;

❶ Enough storage for the string, plus one for the null character

These updates, found in the online repository in
pithy02.c, only change the output by prefixing each line
read with its item number, starting with zero for the first line
read from the file. While this update may seem tiny, it’s
necessary to continue with the next step, which is
dynamically storing all the strings read from the file into
memory.

As the program sits now, it allocates a series of buffers to
store the strings read. Yet the addresses for these buffers
are lost in memory. To resolve this issue, a pointer-pointer is
required. The pointer-pointer, or address of a pointer, keeps
track of all the string’s memory locations. This improvement
is where the code earns its NC-17 rating.

To track the strings stored in memory, make these
improvements to pithy02.c, which now becomes
pithy03.c:

Add a second int variable, x, used in a later for loop. Also
add the pointer-pointer variable list_base:

int items,x;
char **list_base;

The list_base variable keeps track of the entry pointers
allocated later in the code. But first, the list_base pointer
must be allocated itself. Insert this code just after the file is
opened and before the while loop:

list_base = (char **)malloc(sizeof(char *) * 100);
if(list_base==NULL)
{
 fprintf(stderr,"Unable to allocate memory\n");
 exit(1);
}

The illustration in figure 2.4 shows what’s happening with
the first statement allocating variable list_base. It’s a
pointer to a pointer, which requires the ** notation. The
items it references are character pointers. The size of the list
is 100 entries, which is good enough—for now.

Figure 2.4 How the terrifying pointer-pointer buffer is allocated

Within the while loop, remove the printf() statement.
Outputting statements takes place outside the loop. In place
of the printf() statement, add this statement below the
strcpy() statement:

*(list_base+items) = entry;

Using the offset provided by the items count, this
statement copies the address stored in pointer variable
entry into the list maintained at location list_base. Only
the address is copied, not the entire string. This statement
represents crazy pointer stuff—and it works. Figure 2.5
illustrates how the crazy kit ’n’ kaboodle looks.

Figure 2.5 The list_base and items variables help store strings

allocated by the entry pointer.

Finally, after the file is closed, output all the items with this
for loop:

for(x=0; x<items; x++)
 printf("%s",*(list_base+x));

In this loop, variable x sets the offset in the list of
addresses: *(list_base+x) references each line of text
read from the file, now stored in memory.

At this point, the program effectively reads all the text from
the file, stores the text in memory, and keeps track of each
string. Before a random string can be plucked out of the lot,
care must be taken to consider when more than 100 lines
are read from the file.

When memory is allocated for the list_base variable, only
100 pointers can be stored in that memory chunk. If the
value of variable items creeps above 100, a memory
overflow occurs. To prevent this catastrophe, the code must
reallocate memory for list_base. This way, if the file
that’s read contains more than 100 lines of text, they can be
stored in memory without the program puking all over itself.

To reallocate memory, or to increase the size of an already-
created buffer, use the realloc() function. Its arguments are
the existing buffer’s pointer and the new buffer size. Upon
success, the contents of the old buffer are copied into the
new, larger buffer. For the size of list_base to be
increased, it must be reallocated to another 100 char
pointer-sized chunks.

Only one change is required in order to update the code. The
following lines are inserted at the end of the while loop, just
after the items variable is incremented:

if(items%100==0) ❶
{

 list_base = (char **)realloc(list_base,sizeof(char *)*(items+100)); ❷
 if(list_base==NULL)
 {
 fprintf(stderr,"Unable to reallocate memory\n");
 exit(1);
 }
}

❶ Every time items is exactly divisible by 100 . . .

❷ . . . existing storage is increased by 100 pointer-size chunks.

This update is saved as pithy04.c. The code runs the
same as the program generated from pithy03.c, though if
the file that’s read contains more than 100 lines of text,
each is properly allocated, stored, and referenced without
disaster.

The program is now ready to do its job: to select and output
a random item from the file. The final step is to remove the
for loop at the end of the code; it’s no longer needed, as the
program is required to output only one random line from the
file.

Start by including the time.h header file:

#include <time.h>

Replace the declaration for its int variable x with a
declaration for new variable saying:

int items,saying;

Three lines are added to the end of the code, just above the
return statement:

srand((unsigned)time(NULL));
saying = rand() % (items-1);
printf("%s",*(list_base+saying));

This is the final update to the code, available in the online
repository as pithy05.c. When run, the program extracts
a random line from the file, outputting its text.

As I wrote earlier in this section, this approach is only one
way to resolve the problem. It’s quick and it works, which is
good enough to add a pithy saying to your shell startup
script.

One final note: the program doesn’t release any memory
directly. Normally, the end of a function would be dotted with
free() statements, one for each memory chunk allocated.
Because the entire code dwells within the main() function,
freeing memory isn’t necessary. The memory allocated is
freed when the program quits. Had the allocation taken
place in a function, however, it’s necessary to release the
allocation or risk losing the memory chunk and potentially
causing a memory overflow.

2.5.3 Adding the phrase to your greeting code

If your goal is to modify a single greetings program for the
shell’s startup script, your next task is to add the code from
the pithy series of programs into your greetings program.
Such a task would keep all your efforts in a single program
and all the output on a single line in the shell startup script.

Because the pithy program is kinda fun, I’m not
incorporating it into my previous greetings program code.
Instead, I’ll leave it as its own line in the shell startup script.
That way, I can also run the program from the command
prompt any time I need to be humored or am in need of
levity. You can work to incorporate the pithy program into
your greetings program on your own.

3 NATO output

Count yourself blessed if you’ve never had to spell your
name over the phone. Or perhaps you’re named Mary
Smith, but you live on a street or in a city you must
constantly spell aloud. If so, you resort to your own spelling
alphabet, something like, “N, as in Nancy” or “K, as in
knife.” As a programmer, you can ease this frustration by
reading this chapter, where you

Understand the NATO phonetic alphabet and why they
even bother.

Translate words into the spelling alphabet.

Read a file to translate words into the phonetic
alphabet.

Go backward and translate the NATO alphabet into
words.

Read a file to translate the NATO alphabet.
Learn that natto in Japanese is a delicious, fermented
soybean paste.

The last bullet point isn’t covered in this chapter. I just
enjoy eating natto, and now I can write it off as a business
expense.

Anyway.

The glorious conclusion to all this mayhem is to not only
learn some new programming tricks but also proudly spell
words aloud by saying “November” instead of “Nancy.”

3.1 The NATO alphabet

Beyond being a handy nickname for anyone named
Nathaniel, NATO stands for the North Atlantic Treaty
Organization. It’s a group of countries who are members of
a mutual defense pact.

Established after World War II, blah-blah-blah. I could wax
on, but the point is that NATO requires some commonality
between its member states. You know, so that when Hans is
short on ammo, Pierre can offer him bullets and they fit into
the gun. Stuff like that.

One common item shared between NATO countries is a way
to spell things out loud. That way, Hans doesn’t need to say,
“Bullets! That’s B, as in bratwurst; U, as in über; L, as in
lederhosen. . . .” And so on. Instead, Hans says, “Bravo,
Uniform, Lima, Lima, Echo, Tango.” This way, Pierre can
understand Hans, even over all the surrounding gunfire.

Table 3.1 lists the NATO phonetic alphabet, describing each
letter with its corresponding word. The words are chosen to
be unique and not easily misunderstood. Two of the words
(Alfa and Juliett) are misspelled on purpose to avoid being
confusing—and to be confusing.

Table 3.1 The NATO phonetic alphabet.

Letter NATO Letter NATO

A Alfa N November

B Bravo O Oscar

C Charlie P Papa

D Delta Q Quebec

E Echo R Romeo

F Foxtrot S Sierra

G Golf T Tango

H Hotel U Uniform

I India V Victor

J Juliett W Whiskey

K Kilo X Xray

L Lima Y Yankee

M Mike Z Zulu

NATO isn’t the only phonetic alphabet, but it’s perhaps the
most common. The point is consistency. As programmer,
you don’t need to memorize any of these words, though as
a nerd, you probably will. Still, it’s the program that can
output NATO code—or translate it back into words,
depending on how you write your C code. Oscar Kilo.

3.2 The NATO translator program

Any NATO translator program you write must have a string
array, like the one shown here:

const char *nato[] = {
 "Alfa", "Bravo", "Charlie", "Delta", "Echo", "Foxtrot",
 "Golf", "Hotel", "India", "Juliett", "Kilo", "Lima",
 "Mike", "November", "Oscar", "Papa", "Quebec", "Romeo",
 "Sierra", "Tango", "Uniform", "Victor", "Whiskey",

 "Xray", "Yankee", "Zulu"
};

The array’s notation, *nato[], implies an array of pointers,
which is how the compiler builds this construction in
memory. The array’s data type is char, so the pointers
reference character arrays—strings—stored in memory. It’s
classified as a constant because it’s unwise to create an
array of strings as pointers and then risk modifying them
later. The nato[] array is filled with the memory locations
of the strings, as illustrated in figure 3.1.

Figure 3.1 How an array of pointers references strings as they sit in

memory

For example, in the figure, the string Alfa (terminated with
a null character, \0) is stored at address 0x404020. This
memory location is stored in the nato[] array, not the
string itself. Yes, the string appears in the array’s
declaration, but it’s stored elsewhere in memory at runtime.
The same structure holds true for all elements in the array:
each one corresponds to a string’s memory location, from
Alfa to Zulu.

The beauty of the nato[] array is that the contents are
sequential, matching up to ASCII values 'A' through 'Z'
when you subtract the value of 'A'. (See chapter 4 for
more details on how this operation works.) This coincidence
makes extracting the character corresponding to the NATO
word embarrassingly easy.

3.2.1 Writing the NATO translator

A simple NATO translator is shown in listing 3.1. It prompts
for input, using the fgets() function to gather a word from
standard input. A while loop churns through the word letter
by letter. Along the way, any alphabetic characters are
detected by the isalpha() function. If found, the letter is
used as a reference into the nato[] array. The result is the
NATO phonetic alphabet term output.

Listing 3.1 Source code for nato01.c

#include <stdio.h>
#include <ctype.h>

int main()

{
 const char *nato[] = {
 "Alfa", "Bravo", "Charlie", "Delta", "Echo", "Foxtrot",
 "Golf", "Hotel", "India", "Juliett", "Kilo", "Lima",
 "Mike", "November", "Oscar", "Papa", "Quebec", "Romeo",
 "Sierra", "Tango", "Uniform", "Victor", "Whiskey",
 "Xray", "Yankee", "Zulu"
 };
 char phrase[64];
 char ch;
 int i;

 printf("Enter a word or phrase: ");

 fgets(phrase,64,stdin); ❶

 i = 0;

 while(phrase[i]) ❷
 {

 ch = toupper(phrase[i]); ❸

 if(isalpha(ch)) ❹

 printf("%s ",nato[ch-'A']); ❺
 i++;

 if(i==64) ❻
 break;
 }
 putchar('\n');

 return(0);
}

❶ Stores into location phrase 63 characters (plus the null character) from stdin, standard

input

❷ Loops until the null character is found in the string

❸ Converts ch to uppercase

❹ True when character ch is alphabetic

❺ ch-'A' transforms the letters to values 0 through 25, matching the corresponding array

element.

❻ A long string may not have a null character, so bail when the buffer size is reached.

When built and run, the program prompts for input.
Whatever text is typed (up to 63 characters) is translated

and output in the phonetic alphabet. For example, “Howdy”
becomes:

Hotel Oscar Whiskey Delta Yankee

Typing a longer phrase such as “Hello, World!” yields:

Hotel Echo Lima Lima Oscar Whiskey Oscar Romeo Lima Delta

Because nonalpha characters are ignored in the code, no
output for them is generated.

Translation into another phonetic alphabet is easy with this
code. All you do is replace the nato[] array with your own
phonetic alphabet. For example, here is the array you can
use for the law enforcement phonetic alphabet:

const char *fuzz[] = {
 "Adam", "Boy", "Charles", "David", "Edward", "Frank",
 "George", "Henry", "Ida", "John", "King", "Lincoln",
 "Mary", "Nora", "Ocean", "Paul", "Queen", "Robert",
 "Sam", "Tom", "Union", "Victor", "William",
 "X-ray", "Young", "Zebra"
};

3.2.2 Reading and converting a file

I’m unsure of the need to translate all the text from a file
into the NATO phonetic alphabet. It’s a C project you can
undertake, primarily for practice, but practically speaking, it
makes little sense. I mean, it would be tedious to hear
three hours of Antony and Cleopatra done entirely in the
NATO alphabet, though if you’re a theater/IT dual major,

give it a shot. Still, this is a book and I’m a nerd, so the
topic will be explored for your betterment.

Listing 3.2 presents code that devours a file and translates
each character into its NATO phonetic alphabet counterpart.
The filename is supplied at the command prompt. If not,
the program bails with an appropriate error message.
Otherwise, similar to the code in nato01.c, the code
churns though the file one character at a time, spewing out
the matching NATO words.

Listing 3.2 Source code for nato02.c

#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>

int main(int argc, char *argv[])
{
 const char *nato[] = {
 "Alfa", "Bravo", "Charlie", "Delta", "Echo", "Foxtrot",
 "Golf", "Hotel", "India", "Juliett", "Kilo", "Lima",
 "Mike", "November", "Oscar", "Papa", "Quebec", "Romeo",
 "Sierra", "Tango", "Uniform", "Victor", "Whiskey",
 "Xray", "Yankee", "Zulu"
 };
 FILE *n;
 int ch;

 if(argc<2) ❶
 {
 fprintf(stderr,"Please supply a text file argument\n");
 exit(1);
 }

 n = fopen(argv[1],"r"); ❷
 if(n==NULL)
 {
 fprintf(stderr,"Unable to open '%s'\n",argv[1]);
 exit(1);
 }

 while((ch=fgetc(n))!=EOF) ❸

 {

 if(isalpha(ch)) ❹

 printf("%s ",nato[toupper(ch)-'A']); ❺
 }
 putchar('\n');

 fclose(n);

 return(0);
}

❶ If fewer than two arguments are present, the filename option is missing.

❷ Opens the filename supplied at the command prompt, referenced as argv[1]

❸ Reads one character at a time from the file, storing it in variable ch. The EOF marks the

end of the file

❹ Processes only text characters

❺ Uses the uppercase version of the character, minus the value of 'A' to index the nato[]

array

Remember to use integer variables when processing text
from a file. The EOF flag that marks the end of a file is an
int value, not a char value. The while statement in the code
is careful to extract a character from the file as well as
evaluate the character to determine when the operation is
over.

To run the program, type a filename argument after the
program name. Text files are preferred. The output appears
as a single line of text reflecting the phonetic alphabet
words for every dang doodle character in the file.

For extra fun on the Macintosh, pipe the program’s output
through the say command:

nato02 antony_and_cleopatra.txt | say

This way, the phonetic alphabet contents of the file given
are read aloud by the Mac, from start to end. Sit back and
enjoy.

3.3 From NATO to English

Phonetic alphabet translation is supposed to happen in your
head. Someone spells their hometown: India, Sierra, Sierra,
Alfa, Quebec, Uniform, Alfa, Hotel. And the listener knows
how to write down the word, spelling it properly. The word
is Issaquah, which is a city where I once lived. I had to spell
the name frequently. The beauty of this operation is that
even a person who doesn’t know the NATO alphabet can
understand what’s being spelled, thanks to the initial letter.

More difficult, however, is to write code that scans for
phonetic alphabet words and translates them into the
proper single characters. This process involves parsing input
and examining it word by word to see whether one of the
words matches a term found in the lexicon.

3.3.1 Converting NATO input to character output

To determine whether a phonetic alphabet term appears in
a chunk of text, you must parse the text. The string is
separated into word chunks. Only after you pull out the
words can you compare them with the phonetic alphabet
terms.

To do the heavy lifting, use the strtok() function to parse
words in a stream of text. I assume the function name
translates as “string tokenizer” or “string to kilograms,”
which makes no sense.

The strtok() function parses a string into chunks based on
one or more separator characters. Defined in the string.h
header file, the man page format is:

char *strtok(char *str, const char *delim);

The first argument, str, is the string to scan. The second
argument, delim, is a string containing the individual
characters that can separate, or delimit, the character
chunks you want to parse. The value returned is a char
pointer referencing the character chunk found. For example:

match = strtok(string," ");

This statement scans characters held in buffer string,
stopping when the space character is encountered. Yes, the
second argument is a full string, even when only a single
character is required. The char pointer match holds the
address of the word (or text chunk) found, terminated with
a null character where the space or another delimiter would
otherwise be. The NULL constant is returned when nothing
is found.

To continue scanning the same string, the first argument is
replaced with the NULL constant:

match = strtok(NULL," ");

The NULL argument informs the function to use the string
passed earlier and continue the tokenizing operation. The
code shown in the next listing illustrates how to put the
strtok() function to work.

Listing 3.3 Source code for word_parse01.c

#include <stdio.h>
#include <string.h>

int main()
{
 char sometext[64];
 char *match;

 printf("Type some text: ");
 fgets(sometext,64,stdin);

 match = strtok(sometext," "); ❶

 while(match) ❷
 {
 printf("%s\n",match);

 match = strtok(NULL," "); ❸
 }

 return(0);
}

❶ The initial call to strtok(), with the string to search.

❷ Loops as long as the return value isn’t NULL.

❸ In the second call to strtok(), NULL is used to keep searching the same string.

In this code, the user is prompted for a string. The strtok()
function extracts words from the string, using a single space
as the separator. Here’s a sample run:

Type some text: This is some text
This

is
some
text

When separators other than the space appear in the string,
they’re included in the character chunk match:

Type some text: Hello, World!
Hello,
World!

To avoid capturing the punctuation characters, you can set
this delimiter string:

match = strtok(sometext," ,.!?:;\"'");

Here, the second argument lists common punctuation
characters, including the double quote character, which
must be escaped (\"). The result is that the delimited words
are truncated, as in:

Type some text: Hello, World!
Hello
World

You may find some trailing blank lines in the program’s
output. These extra newline characters are fine for
matching text, because the blank lines won’t match
anything anyhow.

To create a phonetic alphabet input translator, you modify
this code to perform string comparisons with an array of
NATO phonetic alphabet terms. The strcmp() function
handles this task, but you must consider two factors.

First, strcmp() is case-sensitive. Some C libraries feature a
strcasecmp() function that performs case-insensitive
comparisons, though this function isn’t part of the C
standard. Second, the string length may vary. For example,
if you choose not to count the punctuation characters ("
,.!?:;\"'") in the strtok() function—or when an
unanticipated punctuation character appears—the
comparison fails.

Given these two situations, I figure it’s best to concoct a
unique string comparison function, one designed specifically
to check parsed words for a match with a phonetic alphabet
term. This function, isterm(), is shown next.

Listing 3.4 The isterm() function

char isterm(char *term)
{
 const char *nato[] = {
 "Alfa", "Bravo", "Charlie", "Delta", "Echo", "Foxtrot",
 "Golf", "Hotel", "India", "Juliett", "Kilo", "Lima",
 "Mike", "November", "Oscar", "Papa", "Quebec", "Romeo",
 "Sierra", "Tango", "Uniform", "Victor", "Whiskey",
 "Xray", "Yankee", "Zulu"
 };
 int x;
 char *n,*t;

 for(x=0; x<26; x++)
 {

 n = nato[x]; ❶

 t = term; ❷

 while(*n!='\0') ❸
 {

 if((*n|0x20)!=(*t|0x20)) ❹

 break; ❺

 n++; ❻

 t++; ❻
 }

 if(*n=='\0') ❼

 return(*nato[x]); ❽
 }
 return('\0');
}

❶ Sets pointer n to the current NATO word

❷ Pointer t references the term passed.

❸ Loops until the NATO term ends

❹ Logically converts each letter to uppercase and compares; refer to chapter 5 for more info

on this and other ASCII tricks.

❺ For no match, the loop breaks and the next term in nato[] is compared.

❻ Increments through each letter

❼ When pointer n is the null character, the terms have matched.

❽ Returns the first letter of the NATO term

The isterm() function accepts a word as its argument. The
return value is a single character if the word matches a
NATO phonetic alphabet term; otherwise, the null character
is returned.

To create a new NATO translation program, add the isterm()
function to your source code file, below any existing code.
You must include both the stdio.h and string.h header
files. Then add the following main() function to build a new
program, nato03.c, as shown here.

Listing 3.5 The main() function from nato03.c

int main()
{
 char phrase[64];
 char *match;
 char ch;
 printf("NATO word or phrase: ");
 fgets(phrase,64,stdin);

 match = strtok(phrase," ");
 while(match)
 {
 if((ch=isterm(match))!='\0')
 putchar(ch);
 match = strtok(NULL," ");
 }
 putchar('\n');

 return(0);
}

The code scans the line input for any matching phonetic
alphabet terms. The isterm() function handles the job. The
matching character is returned and output. Here’s a sample
run:

NATO word or phrase: india tango whiskey oscar romeo kilo sierra
ITWORKS

An input sentence with no matching characters outputs a
blank line. Mixed characters are output like this:

NATO word or phrase: Also starring Zulu as Kono
Z

If you want to add in code to translate special characters,
such as punctuation characters, you can do so on your own.
Keep in mind that the NATO phonetic alphabet lacks terms
with punctuation, though if you’re creating your own text-
translation program, checking for special characters might
be required.

3.3.2 Reading NATO input from a file

Reading input to detect and translate an alphabetic
language is silly but a good exercise. Reading an entire file
to detect an alphabetic language is even sillier. I try not to
think of it as a necessity but rather as programming
practice: can you scan a file for specific words and then
report on their presence? Adopt this notion to justify
completing such a program.

As with reading a line of text, to process text in a file for
signs of NATO alphabet words, you need the isterm()
function. The file reads a line at a time, and the contents of
each line are examined similarly to the code presented in
nato03.c. Mixing in the file commands from nato02.c,
I’ve created a child program, nato04.c. It’s found in this
book’s GitHub repository. Assembling such a program in a
kind of Frankenstein way appeals to me. It’s the philosophy
upon which Stack Overflow is successful.

The guts of nato04.c process an open file by using two
while loops, illustrated in the next listing. If you’ve been
following along with the NATO series of programs in this
chapter, many of the statements are familiar to you.

Listing 3.6 Processing words in a file with nested loops

while(!feof(n)) ❶
{

 fgets(phrase,64,n); ❷

 match = strtok(phrase," ,.!?=()[]{}'\""); ❸

 while(match) ❹
 {

 if((ch=isterm(match))!='\0') ❺
 putchar(ch);
 match = strtok(NULL," ,.!?=()[]{}'\"");

 }
}
putchar('\n');

❶ Loops until the end of open file handle n

❷ Grabs a line of text up to 63 characters

❸ Filters out a lot of characters

❹ Loops until all the words in the line are read

❺ Sends the matching word off to the isterm() function

The result of all this cobbled code is to pluck out any
matching NATO phonetic alphabet terms stored in a file and
pop out the corresponding letter for each. As you may
guess, few files have a NATO term smuggled inside, so the
output is often empty. Still, I ran the code using the
nato04.c source code file as input:

$ nato04 nato04.c
ABCDEFGHIJKLMNOPQRSTUVWXYZ

Much to its delight, the program found the nato[] array’s
text and gobbled up all the alphabetic terms, in order, to
spew out the alphabet itself. Wonderful.

One problem with the code in nato04.c is that the fgets()
function reads in only a slice of characters per line. In the
source code, if a line of text in the file is shorter than the
given number of characters (63 plus one for the null
character), the line of text is read up to and including the
newline character. If the line of text in a file is longer than
the quantity specified by the fgets() function, it’s truncated.
Truncating text when you’re looking for a word is bad,
though not as bad as truncating an elephant.

To better process the file, and ensure that words aren’t split
by an unforgiving fgets() function, I’ve recajiggered the
code to read the file one character at a time. In this
approach, the code works more like a program filter. (Filters
are covered in chapter 4.) The words in the file are
assembled as each character is digested.

Listing 3.7 shows a while loop that processes an open file,
represented by FILE handle n. Characters are stored in int
variable ch, read one at a time by using the fgetc()
function. The integer variable offset tracks the characters
read as they’re stored in a word[] buffer. This buffer is 64
characters long. If a buffer overflow occurs, the program
terminates. I mean, show me a word longer than 64
characters. And if you can legitimately find one, increase
the buffer size.

Listing 3.7 Processing words in a file one at a time

offset = 0;

while((ch=fgetc(n))!=EOF) ❶
{

 if(isalpha(ch)) ❷
 {

 word[offset] = ch; ❸
 offset++;

 if(offset>=64) ❹
 {
 fprintf(stderr,"Buffer overflow\n");
 return(1);
 }
 }

 else ❺
 {

 if(offset > 0) ❻
 {

 word[offset] = '\0'; ❼

 putchar(isterm(word)); ❽

 offset=0; ❾
 }
 }
}
putchar('\n');

❶ Loops as long as the file has bytes to read

❷ Words start with a letter of the alphabet.

❸ Stores the character to build the word

❹ Checks for overflow; bails if so

❺ A nonalphabetic character is found, meaning the end of a word.

❻ Confirms that the word[] buffer has some text in it

❼ Cap your strings!

❽ Processes the word, returning a valid character or the null character (doesn’t print)

❾ Resets the offset to store the next word

The code shown in listing 3.7 is part of the nato05.c
source code file, available in this book’s GitHub repository.
The program works similarly to nato04.c, though a long
line of text read from the file isn’t split—which could split a
valid word. By processing the file’s text one character at a
time, such a split can’t happen (unless the word is
ridiculously long).

The program’s output is identical to that of nato04.c in
the case of processing the source code file’s text:

$ nato05 nato05.c
ABCDEFGHIJKLMNOPQRSTUVWXYZ

Like any program, the code for nato05.c can be improved
upon. As it’s written, the code relies upon a nonalphabetic
character to terminate a word: the isalpha() function

returns TRUE when the character (int value) examined is in
the range 'A' to 'Z' or 'a' to 'z'. This rule eliminates
contractions (don’t, o’clock), though it’s rare such
contractions would be included in a phonetic alphabet.

Beyond peeking into a file for NATO phonetic alphabetic
terms, the code provides a practical example of how to scan
any file for specific words. Consider it inspiration for other
programs you may create. Or just enjoy your newfound
knowledge of the NATO phonetic alphabet, so you can beam
with pride when asked to spell your city name over the
phone.

4 Caesarean cipher

Caesar wrote, “Gallia est omnis divisa in partes tres.” If he
had wanted the message to be a secret, he would have
written, “Tnyyvn rfg bzavf qvivfn va cnegrf gerf.” This subtle
encryption was easy to concoct, yet even a literate spy
would be unable to translate the scrambled Latin without
knowing the key. On the receiving end, where the
deciphering method is known, the message is quickly
decoded and . . . pity poor Gaul. This method of encoding is
today known as the Caesarean cipher.

The Caesarean cipher is by no means secure, but it’s a fun
programming exercise. It also opens the door to the
concepts of filters and filter programming in C. This chapter
covers the concept of a filter, including stuff like this:

Dealing with streaming input and output

Programming a simple input/output (I/O) filter

Rotating characters 13 places

Shifting characters in specific increments

Coding a hex input filter

Creating a NATO phonetic alphabet filter
Writing a filter to find words

Filters abide in the command prompt’s realm. Special
command characters are used to apply the filter at the

prompt, redirecting input and output away from the
standard I/O devices. Therefore, I strongly suggest you
eschew your beloved IDE for this chapter and dive headfirst
into the realm of command-line programming. Doing so
makes you almost an über nerd, plus it gives you boasting
rights at those few parties you’re invited to attend.

4.1 I/O filters

Do you remember singing about I/O back at computer
camp? The reason for such merriment was to drive home
the point that the computer beehive exists for the purpose
of absorbing input and creating modified output. The key is
what happens between the I and the O, and not just the
slash character. No, what’s important are the mechanics of
modifying input to generate some type of useful output.

An I/O filter is a program that consumes standard input,
does something to it, then spews forth the modified output.
It’s not an interactive program: input flows into the filter
like a gentle stream. The filter does something magical, like
remove all the bugs and dirt, and then generates output:
pure, clean water (though all this action takes place at a
digital level, even the bugs).

4.1.1 Understanding stream I/O

To best implement a filter, you must embrace the concept of
stream I/O, which is difficult for many C programmers to
understand. That’s because your experience with computer

programs is on an interactive level. Yet in C, input and
output work at the stream level.

Stream I/O means that all I/O gurgles through a program
without pause, like water from a garden hose. The code
doesn’t know when you’ve paused or stopped typing. It only
recognizes when the stream ends as identified by the end-
of-file (EOF) character.

Thanks to line buffering, the code may pay only casual
attention to the appearance of the newline character, \n
(when you press the Enter key). Once encountered, the
newline may flush an output buffer, but otherwise stream
I/O doesn’t strut or crow about what text is input or how it
was generated; all that’s processed is the stream, which
you can imagine as one long parade of characters, as
illustrated in figure 4.1.

Figure 4.1 A stream of text—not as jubilant as a parade, but you get the

idea.

Stream I/O may frustrate you, but it has its place. To help
you accept it, understand that input may not always come
from the standard input device (the keyboard). Likewise,
output may not always go to the standard output device
(the display). The standard input device, stdin, is just one
of several sources of input. For example, input can also

come from a file, another program, or a specific device, like
a modem.

The code in listing 4.1 demonstrates how many C beginners
craft a wannabe interactive program. The assumption made
is that input is interactive. Instead, input is read from the
stream (refer to figure 4.1). Though the code may prompt
for a single letter, it’s really reading the next character from
the input stream. Nothing else matters—no other
considerations are made.

Listing 4.1 stream_demo.c

#include <stdio.h>

int main()
{
 int a,b;

 printf("Type a letter:");

 a = getchar(); ❶
 printf("Type a letter:");

 b = getchar(); ❷

 printf("a='%c', b='%c'\n",a,b);

 return(0);
}

❶ Reads a single character from standard input

❷ Reads the next single character from standard input

The programmer’s desire is to read two characters, each
typed at its own prompt. What happens instead is that the
getchar() function plucks each character from the input
stream, which includes the first letter typed plus the Enter
key press (newline). Here’s a sample run:

Type a letter:a
Type a letter:a='a', b='
'

The first character is read by getchar(), the letter a. Then
the user presses Enter, which becomes the next character
read by the second getchar() statement. You see this
character in the output for b (split between two lines). Take
a gander at figure 4.2, which illustrates what the user typed
as the input stream and how the code read it.

Figure 4.2 The input stream contains two characters read by two

getchar() functions.

If you type ab at the first prompt, you see this output:

Type a letter:ab
Type a letter:a='a', b='b'

The two getchar() functions read characters from the
stream, one after the other. If the user types a and b, these
characters are plucked from the stream regardless of the
onscreen prompt, lovingly illustrated in figure 4.3. The
newline (which appears in the input stream in the figure)
isn’t read by the code but is used to flush the buffer. It

allows the code to process input without the user having to
sit and wait for an EOF.

Figure 4.3 Two more characters are read from the input stream.

Understanding stream I/O helps you properly code C
programs and also appreciate how an I/O filter works. Even
so, you probably remain curious about how interactive
programs are constructed. The secret is to avoid stream I/O
and access the terminal directly. The Ncurses library is one
tool you can use to make programs fully interactive. This
library is the foundation upon which full-screen text-mode
programs like vi, top, and others are built. Check out
Ncurses if you want to code interactive, full-screen text
mode programs for Linux. And, of course, I wrote a book on
the topic, which you can order from Amazon: Dan Gookin’s
Guide to Ncurses Programming.

Enough self-promotion.—Editor

Another aspect of stream I/O is buffering. You see a bit of
this when you press the Enter key to process input for a
wannabe interactive program like stream_demo.c. In fact,

an aspect of I/O buffering is present when the program’s
first prompt is output:

Type a letter:

This text appears and output stops because of buffering.
Output to the standard output device (stdout) is line
buffered in C. This configuration means that stream output
is stored in a buffer until the buffer gets full or when a
newline character is encountered in the stream, after which
the text is output. It’s the presence of the newline that
makes output stop in the stream_demo.c program.

Another type of buffer is block buffering. When this mode is
active, output doesn’t appear until the buffer is full—or
when the program ends. Even if a newline appears in the
stream, block buffering stores the character in the stream,
la-di-da.

Buffering for an I/O device is set by using the setbuf()
function, defined in the stdio.h header file. This function
overrides the terminal’s default line buffering and
establishes block buffering using a specific chunk of
memory. In effect, it disables line buffering for the given file
handle (or standard I/O device) and activates block
buffering.

The code in the next listing uses the setbuf() function to
alter output from line buffering to block buffering. The
setbuf() statement helps demonstrate how the output
stream (stdout) is affected.

Listing 4.2 buffering.c

#include <stdio.h>

int main()
{

 char buffer[BUFSIZ]; ❶
 int a,b;

 setbuf(stdout,buffer); ❷

 printf("Type a letter:");
 a = getchar();
 printf("Type a letter:");
 b = getchar();

 printf("a='%c', b='%c'\n",a,b);

 return(0);
}

❶ A holding bin for standard output; BUFSIZ is defined in stdio.h.

❷ Commits standard output to block buffering

If you build and run buffering.c, you see no output.
Instead, the getchar() function prompts for input, so the
program waits. The output is held back, stored in the
character array buffer, waiting for text to fill the buffer or
for the program to end.

Here is a sample run of the code, where no prompt appears.
Still, the user is somehow prescient enough to provide
input, typing ab at the blinking cursor. Only after the Enter
key is pressed does the program end and the buffer is
flushed, revealing standard output:

ab
Type a letter:Type a letter:a='a', b='b'

By the way, some C programmers use the fflush() function
to force output or to clear the input stream. This function,
defined in the stdio.h header file, dumps the stream for
the named file handle, such as stdin or stdout. I find it
unreliable and an awkward method to force stream I/O to
somehow feign an interactive C program. Using this
technique (which I confess to recommending in some of my
other books) is known as a kludge. This term implies that
using fflush() to empty an input or output buffer may be a
workable solution but not the best.

4.1.2 Writing a simple filter

Filters modify stream input and generate stream output.
They manipulate the stream at the character level: a tiny
character pops in, it’s somehow manipulated, and then
something else pops out or not at all. The two functions
most commonly used to perform the filter’s magic are
getchar() and putchar(), both defined in the stdio.h
header file.

The getchar() function reads a single character from
standard input. For most compilers, getchar() is a macro,
equivalent to the fgetc() function:

c = fgetc(stdin);

The fgetc() function reads a single character (byte) from an
open file handle. On the preceding line, stdin is used as
the standard input device. The integer value returned is

stored in the int variable c. This variable must be declared
of the integer data type, not character. The reason is that
important values, specifically the end-of-file (EOF) marker,
are integer values. Assigning the function’s return value to a
char variable means the EOF won’t be interpreted properly.

The putchar() function sends a single character to standard
output. As with getchar(), putchar() is often defined as a
macro that expands to the fputc() function:

r = fputc(c,stdout);

The fputc() function sends an integer value c to the open
file handle represented by stdout, the standard output
device. The return value, r, is the character written or EOF
for an error. As with fgetc(), both variables r and c must be
integers.

A do-nothing filter is presented in listing 4.3. It uses a while
loop to process input until the EOF (end-of-file) marker is
encountered. In this configuration, a character is read from
standard input and stored in an int variable ch. The value of
this character is then compared with the EOF defined
constant. Providing that the character read isn’t the EOF,
the loop spins. Such a loop can be constructed in other
ways, but by using this method, you ensure that the EOF
isn’t output accidentally.

Listing 4.3 io_filter.c

#include <stdio.h>

int main()
{

 int ch; ❶

 while((ch = getchar()) != EOF) ❷

 putchar(ch); ❸

 return(0);
}

❶ I/O deals with integers, not characters.

❷ Reads input until the end of file is encountered; EOF is an integer value.

❸ Spews output

The result of the io_filter.c program is to do nothing. It
works just like plumbing: water goes in, water comes out.
No modification is made to the characters; the putchar()
function outputs the character input, ch. Even so, the
program demonstrates the basic structure for creating a
filter that does something useful.

If you run the filter program by itself, you see input echoed
to output: pressing Enter flushes the output buffer, causing
the echoed text to appear:

hello
hello

Press the EOF key to halt the program. In Linux, the EOF
key is Ctrl+D. In Windows, press Ctrl+Z for the EOF.

To make the filter do something, build up the while loop in
the io_filter.c source code. The goal is to modify the

characters’ input before sending them to output.
(Otherwise: plumping.)

As an example, you could modify the input so that all
vowels are detected and replaced with an asterisk character.
This modification takes place within the while loop, as it
processes the input stream. Here is one way to accomplish
this task:

while((ch = getchar()) != EOF)
{
 switch(ch)
 {
 case 'a':
 case 'A':
 case 'e':
 case 'E':
 case 'i':
 case 'I':
 case 'o':
 case 'O':
 case 'u':
 case 'U':
 putchar('*');
 break;
 default:
 putchar(ch);
 }
}

The full source code for this modification is available in this
book’s GitHub repository as censored.c. Here’s a sample
run:

hello
h*ll*

EXERCISE 4.1

Now that you have the basic filter skeleton in
io_filter.c, you can perform your own modifications,
testing your filter programming skills. Here is such a
challenge you can code on your own: write a filter that
converts lowercase characters to uppercase. The effect of
such a filter is to generate output in ALL CAPS. My solution
to this exercise is found in this book’s GitHub repository as
allcaps.c.

EXERCISE 4.2

Write a filter that randomizes character text, modifying
standard input to generate output in either upper- or
lowercase, regardless of the original character’s case. I
have included my potential solution to this exercise in this
book’s GitHub repository as ransom.c.

4.1.3 Working a filter at the command prompt

You can’t test a filter from within an IDE, so banish yourself
to the command prompt if you haven’t already. The I/O
redirection tools you need are shown in table 4.1. These
single-character commands modify the stream, altering the
flow of input or output—or both!

Table 4.1 I/O redirection characters and their functions

Character Name What it does

> Greater than Redirects output (not

really used for filters)

< Less than Redirects input

| Pipe Sends output through

another program

Assume that you’ve completed exercise 4.2, where you
create a filter to randomize character text. This filter
program is named hostage. To use this filter, you must
specify the program’s full pathname. For the following
commands, it’s assumed that the filter is stored in the same
directory where the command is typed; the ./ prefix directs
the operating system to find the program in the current
directory:

echo "Give me all your money" | ./hostage

The echo command sends a string of text to standard
output. However, the pipe character intercepts standard
output, sending it away from the standard output device
(the terminal window). Instead, the echo command’s output
is provided as input to the named program, ransom. The
result is that the filter processes the string of text as its
input:

gIvE ME AlL yoUR mONey

Another way to churn text through a filter is to use input
redirection. In this configuration, the filter program name

comes first. It’s followed by the input redirection character,
< (less than), and the source of input, such as a text file:

./hostage < file.txt

Above, the contents of file.txt are redirected as input
for the hostage program, which outputs the file’s text
using random upper- and lowercase letters.

The output redirection character doesn’t really play a role
with a filter. Instead, it takes a program’s output and sends
it to a file or a device: The program (or construction’s)
output supplies text for the file. If the file exists, it’s
overwritten. Otherwise, a new file is created:

echo “Give me all your money” | ./hostage > ransom_note.txt

Above, the echo command’s text is processed through the
hostage filter. The output would normally go to the
standard output device, but instead it’s redirected and
saved into the file ransom_note.txt.

Remember that output redirection doesn’t supply input for a
filter. Use the pipe to send output from one program (or
some other source) into the filter.

4.2 On the front lines with Caesar

Julius Caesar didn’t invent the cipher that’s been given his
name. The technique is old but effective with a mostly

illiterate population: Caesar could send an encrypted letter
and—should it fall into enemy hands—the bad guys would
be clueless. Silly Belgae. Yet once received by the right
person, the text was instantly deciphered and pity poor
Gaul again.

Figure 4.4 illustrates how the cipher works, which is a
simple letter shift. It’s based upon a starting pair, such as A
to D, shown in the figure. This relationship continues
throughout the alphabet, shifting letters based on the initial
pair: A to D, B to E, C to F, and so on.

Figure 4.4 The Caesarean cipher is based upon a letter shift.

When you know the initial pair of the cipher, the message is
easily decoded. In fact, you may have used this type of
cipher if you have ever obtained a secret decoder ring: the
initial pair is given and then rest of the message is encoded
or decoded, letter by letter:

EH VXUH WR GULQN BRXU RYDOWLQH.

Surprisingly, the Caesarean cipher, also called a substitution
cipher, is still used today. It’s admittedly weak, but don’t tell
the neighbors. The rot13 filter is perhaps the most
common, which you can read about in the next section.

Still, it’s a fun filter to program, and it has its place in the
realm of encryption techniques.

4.2.1 Rotating 13 characters

The most common Caesarean cipher known to Unix mavens
is the rot13 filter. Please say “rote 13” and not “rot 13.”
Thank you.

The rot13 program works as a filter. If it’s not included with
your Linux distro, use your package manager to locate it as
well as other ancient and nifty command-line tools.

The name rot13 comes from the character substitution
pattern: the Latin alphabet (and ASCII) holds 26
characters, A to Z. If you perform an A-to-N character
substitution, the upper half of the alphabet is swapped with
the lower, as illustrated in figure 4.5. The program “rotates
13” characters. The beauty of this translation is that
running that rot13 filter twice restores text to the original.
This way, the same filter is used to both encrypt and
decrypt messages.

Figure 4.5 The rot13 filter swaps the upper half of the alphabet with

the lower half, effectively “rotating” the characters by 13 positions.

Back on the old ARPANET, as well as on early internet, rot13
was used as a filter in messaging services to hide spoilers,
punchlines, and other information people may not want to
read right away. Figure 4.6 shows a run of the rot13 filter
on a message. In the original text, the joke appears in
standard text with the punchline concealed. After applying
the rot13 filter, the joke text is concealed but the punchline
is revealed, for a hearty har-har.

Figure 4.6 The effect of applying the rot13 filter to text, scrambled and

unscrambled

This type of Caesarean cipher is easy to code, because you
either add or subtract 13 from a given character’s ASCII
value, depending on where the character squats in the
alphabet: upper or lower half. The addition or subtraction
operation works for both upper- and lowercase letters.

In listing 4.4, the code for caesar01.c uses the isalpha()
function to weed out letters of the alphabet. The toupper()
function converts the letters to uppercase so that it can test

for characters in the range from A through M. If so, these
characters are shifted up 13 places: ch+= 13. Otherwise,
the else statement catches the higher letters of the
alphabet, shifting them down.

Listing 4.4 caesar01.c

#include <stdio.h>
#include <ctype.h>

int main()
{
 int ch;

 while((ch = getchar()) != EOF)
 {

 if(isalpha(ch)) ❶
 {

 if(toupper(ch)>='A' && toupper(ch)<='M') ❷

 ch+= 13; ❸
 else

 ch-= 13; ❹
 }
 putchar(ch);
 }

 return(0);
}

❶ Only processes alphabet characters

❷ Searches for “A” through “M” or “a” through “m”

❸ Rotates (shift) up for the lower half of the alphabet

❹ Otherwise, rotates (shift) down

As with all filters, you can employ I/O redirection
commands (characters) to see it in action at the command
prompt. Refer to section 4.1.3 for the specifics. If the
program for the caesar01.c source code is named
caesar01, here’s a sample run:

$ echo "Hail, Caesar!" | ./caesar01
Unvy, Pnrfne!

When the program is run directly, it processes the text you
type as standard input:

$./caesar01
Unvy, Pnrfne!
Hail, Caesar!

Because the rot13 filter decodes and encodes the same
text, you can put the program to the test by running text
through it twice. In the command-line construction below,
text is echoed through the program once and then again.
The result is the original text, thanks to the magic of the
rot13 process:

$ echo "Hail, Caesar!" | ./caesar01 | ./caesar01
Hail, Caesar!

Remember that the rot13 filter isn’t designed to keep
information completely secure. Still, it provides a handy and
common way to keep something concealed but not
necessarily encrypted beyond reach:

Why did Caesar cross the Rubicon?

Gb trg gb gur bgure fvqr.

4.2.2 Devising a more Caesarean cipher

Caesar didn’t use the rot13 filter to encrypt his messages,
mostly because he never upgraded to Linux from his trusty

Commodore 64. No, he preferred the A-to-D shift.
Sometimes it was just an A-to-B shift. Regardless, coding
such a beast is a bit more involved than the convenient 13-
character shift of the rot13 filter.

Properly transposing letters based on a value other than 13
means the letters will wrap. For example, an A-to-D
translation means that Z would wrap to some character Z+3
in the ASCII table. Therefore, to keep the translation going,
the letter shift must wrap from Z back to C (refer to figure
4.4). You must account for such wrapping in your code,
confirming that characters are contained within the 26-
letter change of the alphabet—both upper- and lowercase.

To account for such wrapping, specifically with an A-to-D
translation, your code must construct a complex if condition
using logical comparisons to account for characters that
shift out of range. Figure 4.7 illustrates how such an
expression works. It tests for values greater than 'Z' and
less than 'a', but also greater than 'z'. This arrangement
exists due to how characters are encoded with the ASCII
standard. (See chapter 5 for more details on ASCII.)

Figure 4.7 Detecting overflow characters when performing an A-to-D

shift

When a character is detected as out of range by the if
statement, its value must be reduced by 26, wrapping it
back to 'A' or 'a', depending on the letter’s original case.

Due to the proximity of uppercase 'Z' to lowercase 'a',
this if statement test works because this particular shift is
only three characters. From figure 4.7, you see that the
ASCII table sets only six characters between uppercase Z
and lowercase a. For larger character shifts, more complex
testing must be performed.

Listing 4.5 shows how the A-to-D character shift cipher is
coded, complete with the complex if statement that wraps
overflow characters. Otherwise, the character is shifted by
the value of variable shift, calculated as 'D' - 'A'. This
shift is expressed backward to properly calculate as three.
Therefore, three is added to each alphabetic character in
the code—unless the character is out of range.

Listing 4.5 caesar02.c

#include <stdio.h>
#include <ctype.h>

int main()
{
 int shift,ch;

 shift = 'D' - 'A'; ❶

 while((ch = getchar()) != EOF)
 {

 if(isalpha(ch)) ❷
 {

 ch+=shift; ❸

 if((ch>'Z' && ch<'a') || ch>'z') ❹

 ch-= 26; ❺
 }
 putchar(ch);
 }

 return(0);
}

❶ Shifts from A to D, which is done backward here because math

❷ Handles letters specifically

❸ Shifts the letter

❹ Determines whether the new character is out of range

❺ If so, adjusts its value back within range

Here is a sample run:

Now is the time for all good men...
Qrz lv wkh wlph iru doo jrrg phq...

Unlike with a rot13 filter, you can’t run the same program
twice to decode the A-to-D shift. Instead, to decode the
message, you must shift from D back to A. Two changes are

required to make this change. In the code shown in listing
4.5, first alter the shift calculation:

shift = 'A' - 'D';

Second, the out-of-bounds testing must check the
underside of the alphabet, so see whether a character’s
value has dipped below 'A' or 'a':

if(ch<'A' || (ch>'Z' && ch<'a'))
 ch+= 26;

If the character wraps on the underside of the alphabet, its
value is increased by 26, which wraps it back up to the Z
end, correcting the overflow.

The final program is available as caesar03.c in this book’s
GitHub repository. Here is a sample run:

Now is the time for all good men
Klt fp qeb qfjb clo xii dlla jbk
Qrz lv wkh wlph iru doo jrrg phq...
Now is the time for all good men...

The first two lines show the D-to-A shift of normal text, how
the filter encodes plain text. The second two lines show how
the D-to-A shift decrypts the original A-to-D shift of the
caesar02.c code. (Refer to the output shown earlier.)

As with any filter, you can pipe output through both filters
to recover the original text:

$ echo "Hail, Caesar!" | ./caesar02 | ./caesar03
Hail, Caesar!

Of course, the best way to code a more Caesarean cipher is
to let the user determine which letters to shift. To make this
filter work, command-line arguments are required; filters
are not interactive, so the user isn’t given the opportunity
to provide input otherwise.

The command-line arguments provide the two letters for
the shift, from argument 1 to argument 2. The code then
works out the process, performing the shift on whatever
text is flung into standard input.

Letting the user decide options is always good. Providing
this feature means that the bulk of the code is used to
interpret the command-line options: you must check to see
whether the options are present and then confirm that both
are letters of the alphabet. Such code is available in the
GitHub repository as caesar04.c. The extra step of
checking for two command-line arguments in this source
code file consumes 16 lines of code.

Once the two shifting characters are set, they’re saved in
char variables a and b. A while loop then processes the text
based on the shift value of the two characters supplied.
Because the shift can be up or down, and to best check for
out-of-range values, the loop must separate upper- and
lowercase characters. This approach is best to detect shift
overflow and deal with it properly. The program’s core while
loop and the various tests from my caesar04.c program
are shown in the next listing.

Listing 4.6 The while loop in caesar04.c that performs the character

shift

while((ch = getchar()) != EOF)
{

 if(isupper(ch)) ❶
 {
 ch+= shift;

 if(ch>'Z') ch-=26; ❷

 if(ch<'A') ch+=26; ❷
 putchar(ch);
 }
 else if(islower(ch))
 {
 ch+= shift;

 if(ch>'z') ch-=26; ❷

 if(ch<'a') ch+=26; ❷
 putchar(ch);
 }
 else
 {
 putchar(ch);
 }
}

❶ Upper- and lowercase characters must be handled differently.

❷ Adjusts appropriately for overflow in either direction

Here is a sample run of the caesar04 program with an A-to-
R shift:

$./caesar04 A R
This is a test
Kyzj zj r kvjk

And to reverse, the R-to-A shift is specified as command
line arguments:

$./caesar04 R A
Kyzj zj r kvjk
This is a test

As an improvement, it might be better to have a single
argument that specifies the character shift, such as RA
instead of the separate R and A just shown. Then again, as
with most programmers, messing with code is an eternal
process. I leave this task up to you.

4.3 Deep into filter madness

I’ve created a slew of filters over my programming career.
It’s amazing to think of the fun things you can accomplish.
Well, fun for nerds. Non-nerds are reading a romance novel
right now. Let me spoil it: his work is more important to
him than she is. There. Saved you 180 dreary pages.

Regardless of what a filter does, the method for composing
a filter is always the same: read standard input, modify it,
and then generate standard output.

Before the chapter closes (and I must hurry because my
work is important), I offer a few different filter ideas to help
churn your creative juices. The possibilities are endless.

4.3.1 Building the hex output filter

Just because one character flows into a filter doesn’t mean
another character must always flow out. Some filters may
spew out several characters of output for each character
input. Other filters may not output any modification of text,
such as the more filter.

The more filter is a handy text-reading utility. It’s used to
page output. Shoving output through the more filter
prompts for input after each screen of text:

cat long.txt | more

Above, the contents of file long.txt are output via the cat
command. The more filter pauses the display after every
screenful of text. This filter was popular enough in Unix that
Microsoft “borrowed” it for inclusion with its text-mode
operating system, MS-DOS.

For a filter that generates more output than input, consider
the following listing. The code accepts standard input and
outputs the hex values for each character. The printf()
statement generates two-digit hex values.

Listing 4.7 hexfilter01.c

#include <stdio.h>

int main()
{
 int ch;

 while((ch=getchar()) != EOF)
 {

 printf("%02X ",ch); ❶
 }

 return(0);
}

❶ Outputs character as two-digit hex byte, with a leading zero

The code for hexfilter01.c works well, but it does have
a problem with its output: the two-digit character format

appears as a long string of text. Often a text value is split
between two lines. A better approach would be to monitor
output to avoid splitting a hex value at the end of a line.

EXERCISE 4.3

Assuming that the terminal screen is 80 characters wide,
modify the code to hexfilter01.c so that output doesn’t
split a hex value between two lines. Further, when a newline
character is encountered, have the line of output terminated
with a newline. My solution for this exercise can be found in
the GitHub repository as hexfilter02.c. Please try this
exercise on your own before you peek at my solution.

4.3.2 Creating a NATO filter

Chapter 3 covered the NATO phonetic alphabet, which—
surprise—can also be applied as a filter. For example, the
filter reads standard input, plucking out all the alphabetic
characters. For each one, the filter outputs the
corresponding NATO term. This program is another example
of a filter that does more than a single-character exchange.

To make the phonetic alphabet translation, the code must
borrow the nato[] array of terms presented in chapter 3.
This array is shown in listing 4.8. It’s coupled with the
standard I/O filter while loop. In the loop, the isalpha()
function detects alphabetic characters. Some math is
performed to obtain the proper term offset in the array,
which outputs the correct term for each letter processed.

Listing 4.8 nato01.c

#include <stdio.h>
#include <ctype.h>

int main()
{
 char *nato[] = {
 "Alfa", "Bravo", "Charlie", "Delta", "Echo", "Foxtrot",
 "Golf", "Hotel", "India", "Juliett", "Kilo", "Lima",
 "Mike", "November", "Oscar", "Papa", "Quebec", "Romeo",
 "Sierra", "Tango", "Uniform", "Victor", "Whiskey",
 "Xray", "Yankee", "Zulu"
 };
 char ch;

 while((ch=getchar()) != EOF)
 {
 if(isalpha(ch))

 printf("%s ",nato[toupper(ch)-'A']); ❶

 if(ch=='\n') ❷
 putchar(ch);
 }
 putchar('\n');

 return(0);
}

❶ Translates a character into an offset within the nato[] array

❷ Outputs a newline when encountered to keep the output clean

Here’s a sample run:

$./nato
hello
Hotel Echo Lima Lima Oscar

It’s important to know that any nonalphabetic characters
(aside from newline) are ignored by this filter. Ignoring
input in a filter is legitimate; a filter need not generate one-
to-one output based on input.

4.3.3 Filtering words

Filters operate on character I/O, but this limitation doesn’t
restrict a filter from affecting words, sentences, or other
chunks of text. The key is to store input as it arrives. Once
the proper text chunks are assembled, such as a word or
sentence, the filter can process it.

For example, to slice standard input by word, you write a
filter that collects characters until a word boundary—a
space, comma, tab, or period, for example—is encountered.
The input must be stored, so further testing must be done
to ensure that the storage doesn’t overflow. Once the buffer
contains a word (or whatever size text chunk you need), it
can be sent to standard output or manipulated in whatever
way the filter needs to massage the data.

In listing 4.9, a 64-character buffer word[] stores words.
The while loop is split into if-else conditions. The if test
marks the end of a word, capping the word[] buffer with a
null character, confirming that a full word is ready to output,
and then outputting the word. The else test builds the word,
ensuring that the buffer doesn’t overflow. The result is a
filter that pulls out words and sets each one on a line by
itself.

Listing 4.9 word_filter.c

#include <stdio.h>
#include <ctype.h>

#define WORDSIZE 64 ❶

int main()
{
 char word[WORDSIZE];
 int ch,offset;

 offset = 0; ❷
 while((ch = getchar()) != EOF)
 {

 if(isspace(ch)) ❸
 {

 word[offset] = '\0'; ❹

 if(offset>0) ❺

 printf("%s\n",word); ❻

 offset = 0; ❼
 }

 else ❽
 {

 word[offset] = ch; ❾

 offset++; ❿

 if(offset==WORDSIZE-1) ⓫
 {

 word[offset] = '\0'; ⓬

 printf("%s\n",word); ⓭

 offset = 0; ⓮
 }
 }
 }

 return(0);
}

❶ The word size is set here; this way, you can update the buffer size in a single spot, and

various other parts of the code are updated to reflect the change.

❷ Initializes the offset value

❸ The isspace() function returns TRUE for whitespace characters, marking the end of a word.

❹ Always cap your strings!

❺ Ensures that the buffer has text in it to print

❻ Outputs the buffer’s contents (a word, hopefully) on a line by itself

❼ Resets the offset

❽ Printable characters are handled here, filling the buffer.

❾ Stores the character

❿ Increments the offset

⓫ Checks for potential overflow, a full buffer

⓬ Cap the string!

⓭ Outputs the word, dumping the buffer

⓮ Resets the offset

To build words, the code in word_filter.c replies upon
the isspace() function, defined in the ctype.h header file.
This function returns TRUE when a whitespace character is
encountered on input. These characters include space, tab,
and newline. These whitespace characters trigger a word
boundary, though the code could be modified to account for
other characters as well.

Here’s a sample run:

$./word_filter
Is this still the Caesarean Cipher chapter?
Is
this
still
the
Caesarean
Cipher
chapter?

Twice in the code you see statements that cap the word[]
buffer with a null character:

word[offset] = '\0';

It’s vital that all strings in C end with the null character, \0.
Especially when you build your own strings, as is done in
the word_filter.c code, confirm that the string that’s

created is capped. If not, you get an overflow and all kinds
of ugly output—and potential bad things happening.

5 Encoding and decoding

It’s easy to confuse the topic of encoding and decoding with
encryption. These are similar procedures, but the purpose of
encryption is to conceal and safeguard information. Encoding
is done for transportation of information that may be too
complex for the medium or to translate between different
systems or for other innocuous purposes. Regardless, the
process of encoding and decoding has the potential to be
action packed and full of intrigue.

Well, perhaps not.

Still, back in the early days of computer telecommunications,
encoding and decoding were regular occurrences. I
remember transferring my first program over a modem: 16
kilobytes that took 16 minutes to transfer. That program
consisted of binary data, but it was transported as plain text.
It required encoding on the sending end and decoding on the
receiving end. Such magic happens today as well, though
probably much faster.

To explore the concept of encoding and decoding, regardless
of the thrills and dangers, you must:

Appreciate how characters are represented on
computers

Learn various ASCII encoding tricks

Play with character representation

Translate plain text into hex bytes for data transfer

Reverse translate hex bytes back into text (or data)

Improve encoding techniques by adding checksums
Explore the URL encoding method

None of these items is dreary, not like that book on 100 fun
and legal home projects you can do with an ironing board.
But if you want to know more about encryption, refer to
chapter 4.

5.1 The concept of plain text

The computer doesn’t know text. The char data type is
merely a tiny integer, ranging in value from 0 through 255
(unsigned) or -128 to 127 (signed). It’s only the
presentation of the char data type that makes it look like a
character.

In C, the putchar() function outputs a value as a character.
The function’s man page declares the function’s argument as
an integer, though it appears on the standard output device
as a character.

The printf() function is a bit more understanding of
characters. It outputs a char data type as a character but
only when the %c placeholder is used in the format string. If
you substitute %d, the decimal integer output placeholder,
the data is output as a number.

But what thing is output? How does the computer know to
match a specific value with a given character? The answer
comes in the form of the venerable digital acronym, ASCII.

5.1.1 Understanding ASCII

It’s important to note that ASCII is pronounced “ass-key.”
That’s right: ass and key. Titter all you like, but if you say,
“ask two,” everyone will know you’re a dork.

It’s unimportant to note that ASCII stands for the American
Standard Code for Information Interchange. Yes, it’s a
standard devised by people who sit around all day having
fun creating standards. And though the standard was
developed in the early 1960s, it wasn’t until the mid-1980s
that pretty much every computer on the planet began using
ASCII codes consistently.

By adopting the ASCII standard for assigning codes to
characters, computers can exchange basic information
without requiring any translation. Before it was widely
adopted in the late 1970s, computers had to run translation
programs to get even a text file to read properly from one
system to the next. But today, a text file on your overpriced
Macintosh is easily readable on my cheap-o Linux box that
my friend Don built in the back of his shop for $499.

The way ASCII works is to assign codes, integer values, to
common characters and symbols. This translation originated
from the telegraph era, where the codes had to be
consistent for a message to be translated—encoded and

decoded—lest the Hole-in-the-Wall Gang rob the 12:10 yet
again because old Hamer McCleary was taking a nap at the
Belle Fourche station.

ASCII codes are devised in a clever pattern, which is
amazing for any group of humans to produce. The pattern
allows for all sorts of fun and creative things to happen, as
covered in section 5.1.4. Figure 5.1 lists the ASCII code
table in its common, four “stick” presentation. See whether
you can spy any of the patterns.

Figure 5.1 The ASCII table showing decimal, octal, hexadecimal, and

character values

From figure 5.1, you see that ASCII codes range from 0
through 127. These are binary values 000-0000 through
111-1111. For the C language char data type, these values
are all positive whether the variable is signed or unsigned.

Each of the four columns, or “sticks,” in the ASCII table
(refer to figure 5.1) represents a different category of
character types. Again, the codes are organized, probably
due to some education from earlier abominable computer
character codes that have since been taken out, placed in a
dumpster, and set on fire with a jet engine.

The first stick consists of nonprinting control codes, which is
why its output looks so dull in figure 5.1. Read more about
the control codes in section 5.1.2.

Characters in the second stick in the ASCII table were
selected for sorting purposes. The first few characters echo
those on a teletype machine, the shifted number keys.
These still hold true today for the most part: Shift+1 is the !
(exclamation point), Shift+3 is the # (hash), and so on.

The third stick contains uppercase letters, plus a few
symbols.

The fourth stick contains lowercase letters, plus the rest of
the symbols.

Miracles and magic surrounding the ASCII table and these
codes are covered in the next few sections.

EXERCISE 5.1

Having an ASCII table handy is vital to any programmer.
Rather than sell you my handsome ASCII wall chart on Etsy,
I decided that you must code your own ASCII table. Make
the output appear exactly as shown in figure 5.1—which
happens to be the output from my own ASCII program and
looks like the wall chart. I often run my ASCII program as a
reference because such information is useful and a program
is a quick way to keep it handy, though I’m not making any
money on Etsy.

The source code for my solution to this exercise is found in
this book’s online repository as asciitable01.c. But
please try creating your own before you just ape everything
that I did.

5.1.2 Exploring the control codes

I find the first stick of ASCII codes to be the most
interesting, from both a historical and hilarious perspective.
The control code names are adorable! “End of Text”? Try
using that one in a meeting sometime, but just say “Control
C” instead. Some people might get it.

“End of Text” is the official name of the Ctrl+C control code,
ASCII code 3. Table 5.1 lists the details. Some of the codes
or their keyboard equivalents might be familiar to you.

Table 5.1 ASCII control codes

Decimal Octal Hex Name Ctrl Esc Definition

0 0 00 NULL ^@ \0 Null character

1 1 01 SOH ^A Start of heading

2 2 02 STX ^B Start of text

3 3 03 ETX ^C End of text

4 4 04 EOT ^D End of

transmission

5 5 05 ENQ ^E Enquiry, “Who

is?”

6 6 06 ACK ^F Acknowledgment

7 7 07 BEL ^G \a Bell

8 10 08 BS ^H \b Backspace

9 11 09 HT ^I \t Horizontal tab

10 12 0A LF ^J \n Line feed

11 13 0B VT ^K \v Vertical tab

12 14 0C FF ^L \f Form feed

13 15 0D CR ^M \r Carriage return

14 16 0E SO ^N Shift out

15 17 0F SI ^O Shift in

16 20 10 DLE ^P Data link escape

17 21 11 DC1 ^Q Device control

one, XON

18 22 12 DC2 ^R Device control

two

19 23 13 DC3 ^S Device control

three, XOFF

20 24 14 DC4 ^T Device control

four

21 25 15 NAK ^U Negative

acknowledgment

22 26 16 SYN ^V Synchronous idle

23 27 17 ETB ^W End transmission

block

24 30 18 CAN ^X Cancel

25 31 19 EM ^Y End of medium

26 32 1A SUB ^Z Substitute

27 33 1B ESC ^[\e Escape

28 34 1C FS ^\ File separator

29 35 1D GS ^] Group separator

30 36 1E RS ^^ Record separator

31 37 1F US ^_ Unit separator

Table 5.1 lists decimal, octal (base 8), and hexadecimal
values for each ASCII code. The Name column shows the
ancient teletype name, the code’s original and forgotten
purpose. Still, some of these control codes are used today:
the computer’s beep remains control code 7, the “bell,”
keyboard equivalent Ctrl+G and escape sequence \a (for
alert or alarm).

The Ctrl column shows the control key combinations used in
the terminal window. Modern descriptions use the word Ctrl
for control, though the grizzled, sandal-wearing Unix coders
of yore prefer the caret character, ^. This expression
explains why pressing Ctrl+D as the Linux EOF character
outputs ^D in a terminal window. And this character’s
original name is “End of Transmission,” which makes sense.
(Don’t press Ctrl+D just to see the ^D character appear;
doing so closes the terminal window.)

Some of the control key shortcuts map directly to other keys
on the keyboard, primarily for use in a terminal window. For
example, Ctrl+M is the Enter/Return key: pressing Ctrl+M is

the same as pressing the Enter key. Other control keys
mapped include:

Ctrl+I to Tab

Ctrl+H to Backspace
Ctrl+[to Esc

These shortcuts may not work in all circumstances, but table
5.1 shows how they’re mapped.

The Esc column in table 5.1 lists the C escape character
equivalent for some of the common control codes.
Remember, any code can be specified as an escape character
sequence in C if you use the format \xnn where nn is the
character’s ASCII code in hexadecimal.

Many of the control keys have lost their purpose in a modern
computer. Back in the teletype days—from which the current
terminal window in Linux has its roots—they were
significant. In fact, the Ctrl+S/Ctrl+Q (XON, XOFF) keys still
work to pause and resume a scrolling display of text. It’s
just that modern terminals display text so rapidly that using
these keys today is pointless.

Be careful when outputting a control character in your code.
Some of them have predictable functions, specifically those
in the Esc column in table 5.1. These escape sequences are
useful in C. But sending a weirdo control code to standard
output can potentially mess up the display. For example, on
some terminals, outputting ^L (code 12, Form Feed) clears

the display. When sent to a printer—even a modern printer—
^L ejects a sheet of paper.

As a tip—because I know someday you’re going to try
outputting a control code on purpose or perhaps accidentally
—if a control code whacks out the terminal display, issue the
reset command. Type reset and press Enter, and the
terminal attempts to recover itself from however you
messed it up.

The final control code doesn’t appear in the last stick of the
ASCII table (refer to table 5.1). This is character code 127,
often called Del (Delete) or Rub Out. Like codes 0 through
31, it’s nonprintable, but its output doesn’t mess up the
display. This character is a holdover from the teletype era,
where it was used as a backup-and-erase character; the
Backspace code (8 or ^H) merely moves the cursor and is a
nondestructive backup.

What of the other 128 character codes in a
byte?

Even back in the microcomputer era, a byte of data consisted of 256 possible codes, 0

through 255. ASCII characters defined the standard for codes 0 through 127. The other

codes were nonstandard—not defined by ASCII, though many early computer users would

mislabel them as such.

On the IBM PC, codes 128 through 255 were referred to as Extended ASCII. These codes

output consistent characters for all PC compatibles (more or less), but not for an Apple II,

Commodore 64, or any other popular and wimpy systems of the era. Even then, it was

possible to change the Extended ASCII codes by swapping in a new code page on the PC.

This diversity of characters caused massive confusion. Fortunately, the state of the

computer industry back then was consistent massive confusion, so few people noticed.

Today, any character code above 127 is standardized according to Unicode. These codes

define just about every character you’ve never seen nor heard of. Refer to chapter 8 for

additional and scintillating details.

5.1.3 Generating noncharacter output

When output as a character, char variables appear as a
character. And thank goodness: the days of computers
showing raw data are over—except for the movies, where
computers still feature blinking lights and displays that
output row upon row of numbers. Then again, monitors in
movies make noise when displaying text and “hackers” type
endlessly at a computer where they should be using a
mouse. Silly Hollywood.

Using conversion characters other than %c, you can write
code that outputs char data as decimal or hexadecimal
values—even using the same variable:

printf("%c = %d = %x\n",ch,ch,ch);

In this statement, variable ch is output thrice: once as its
character value, once as a decimal integer, and again as a
hexadecimal integer. If you’re into octal, you can use %o to
output the value in base 8 as well. In fact, if you wrote code
for exercise 5.1, you probably used a printf() statement
along these lines.

But what about binary?

The standard C library lacks a binary output function.
Therefore, it’s your job to write one. Or you can just rely
upon what I use, my binString() function.

Listing 5.1 shows the 8-bit version of my binString()
function, concocted to output values stored in the char data
type. The function uses the bitwise & operator to determine
whether the far left bit in the character byte is on (1). If so,
the character '1' is placed into the b[] buffer; otherwise,
'0' is set. The value in variable a is then shifted one bit
position to the left, and the operation repeats. As the bits
are checked, string b[] is filled with ones and zeros. This
string is declared static, so its value can be returned and the
binary string used by whatever statement calls the
binString() function.

Listing 5.1 The 8-bit binString() function

char *binString(char a)
{

 static char b[9]; ❶
 int i;

 i = 0; ❷

 while(i<8) ❸
 {

 b[i] = a&0x80 ? '1' : '0'; ❹

 a <<= 1; ❺
 i++;
 }

 b[i] = '\0'; ❻

 return(b);
}

❶ The string is static so that its value is retained; nine characters allow for an 8-bit byte, plus

another element for the terminating null character.

❷ Initializes the index variable

❸ Loops for each bit in the 8-bit byte

❹ The ternary operator sets a 1 or 0 into the string, depending on the value of the far left bit in

variable a.

❺ Variable a’s value is shifted one bit position to the left.

❻ At this point, i is equal to 8, so the string is capped.

The 8-bit binString() function can be woven into code to
output values in the ASCII table in binary, which is yet
another way to generate noncharacter output—more
interesting than dull decimal, sexy hex, or outdated octal.

To see binString() function in action, refer to the source code
file binascii01.c included in this book’s online repository.
Its program outputs an ASCII table with binary data.

As a nerd, I enjoy the patterns created by binary values and
how they relate to hexadecimal. In fact, I find it easy to
convert between hex and binary, often doing so in my head.
This relationship is illustrated in table 5.2, which makes it
easy to understand some common ASCII conversion tricks
revealed in the next section.

Table 5.2 Binary to hexadecimal conversions

Binary Hex Binary Hex

0000 0 1000 8

0001 1 1001 9

0010 2 1010 A

0011 3 1011 B

0100 4 1100 C

0101 5 1101 D

0110 6 1110 E

0111 7 1111 F

Figure 5.2 illustrates binary bit positions, which help
continue my nerd-gushing adoration of the binary-
hexadecimal affair. For example, note that even numbers
have zero set as the first binary digit. (Like decimal, binary
digits are ordered from right to left, lowest to highest.) Odd
values have the 1 digit in the first position.

Figure 5.2 Bit positions in a byte and how they factor out into a value

Other things I find cool: binary 1010 is hex A, which is 10
decimal. The double “10” digits is a nice clue. Binary 1011 is
hex B, or 11 decimal. Other patterns are obvious if you
examine table 5.2 and figure 5.2—but be wary of becoming
a nerd, too, if you overly enjoy such things.

5.1.4 Playing with ASCII conversion tricks

The folks who laid out the ASCII table, assigning codes to
characters, were clever—for humans. Either they were
towering geniuses who appreciated knowledge as they
coordinated values and characters, or they just hit the luck
jackpot. I don’t care either way. But I will take advantage of
the serendipity.

Oh, and I loathe the word serendipity.

One of the tricks I take advantage of is the way digits 0
through 9 are mapped to hex values 0x30 through 0x39.
This arrangement makes it easy to perform simple math on
the character values to translate them into numeric values.
For example:

printf("%d\n",'9' - '0');

This printf() statement subtracts '0' from '9', which look
like character values but are seen by the compiler as 0x39 -
0x30. The result is output as decimal value nine, which is
what '9' represents.

If char variable a contains a digit character, you can extract
its integer value with:

b = a - '0';

You can pull a similar trick with letters of the alphabet to get
them in the range of 0 though 25, though the hexadecimal

value of A or a isn’t as sexy. For example, assume an
uppercase letter is in char variable ch:

offset = ch - 'A';

Here, the value of offset is equal to the number of the
uppercase letter in ch, zero through 25 for A through Z. An
example of this operation at work appears in chapter 3,
where the nato[] array is referenced by using a letter of
the alphabet. See nato01.c and nato02.c in this book’s
online repository for chapter 3.

ASCII table sticks one and three (refer to table 5.1) show
the same characters for a different run of numbers. The
control codes in the first stick use characters ^@ through ^_
(underscore) and the third stick uses character @ through _
(underscore). So, one way to express a control code is to
add hex value 0x40 to the character’s value for output. In
the following printf() statement, char variable cc holds a
control code value (0x00 through 0x1F), which is output as
^@ through ^_:

printf("Control code: ^%c\n",cc+0x40);

The following statement reflects another way to express the
statement with the same output:

printf("Control code: ^%c\n",cc+'@');

If you compare the ASCII table’s third and fourth sticks
(again in figure 5.1), you see that the upper- and lowercase
characters differ by exactly 32 or 0x20. This arrangement
allows for some interesting character manipulations to
switch between upper- and lowercase letters:

To convert an uppercase letter to lowercase, you reset
the sixth bit in the byte.
To convert a lowercase letter to uppercase, you set the
sixth bit in the byte.

Figure 5.3 illustrates the bit setting and resetting process
with the letters A and a. The same relationship holds for all
letters of the Latin alphabet: setting or resetting the sixth bit
changes a character between upper- and lowercase.

Figure 5.3 How the sixth bit in a byte affects letter case

To magically manipulate the sixth bit in a byte, you use a
bitwise logical operator, & (AND) or | (OR). You most likely
skipped over these operators when you first learned C. For
shame.

To convert uppercase to lowercase, you must set the sixth
bit. This operation is handled by the | (OR) operator on the
byte’s sixth bit. The expression is:

c = c | 0x20;

Above, the uppercase letter in char variable c is converted
to its lowercase equivalent. The code can also be
abbreviated as:

c |= 0x20;

To convert a lowercase letter to uppercase, you must reset
(change to zero) the sixth bit in the byte. To handle this
operation, use the & bitwise operator, which masks out bits:

c = c & 0xdf;

Also:

c &= 0xdf;

The binary representation of 0x20 is 01000000. The binary
representation of 0xdf is 10111111.

The source code shown in listing 5.2 demonstrates these
techniques. The sample string in sentence[] is processed
twice. The first time, a while loop plucks uppercase
characters from the string, converting them to lowercase by
the bitwise | 0x20 operation. The second while loop targets
lowercase letters, converting them to uppercase with the &
0xdf operation. Pointer s is used to work through the
sentence[] array one character at a time.

Listing 5.2 Source code for casetricks01.c

#include <stdio.h>

int main()
{
 char sentence[] = "ASCII makes my heart beat faster\n";
 char *s;

 s = sentence;
 while(*s)
 {

 if(*s>='A' && *s<='Z') ❶

 putchar(*s | 0x20); ❷
 else
 putchar(*s);
 s++;
 }

 s = sentence;
 while(*s)
 {

 if(*s>='a' && *s<='z') ❸

 putchar(*s & 0xdf); ❹
 else
 putchar(*s);
 s++;
 }

 return(0);
}

❶ Filters out uppercase text

❷ Outputs the lowercase character

❸ Filters out lowercase text

❹ Outputs the uppercase character

Here is sample output:

ascii makes my heart beat faster
ASCII MAKES MY HEART BEAT FASTER

In my code, I often revert to using the ctype functions
tolower() or toupper() to make the conversion. But these
bitwise operations perform the trick just as well, with the
bonus that they make your code look super cryptic.

5.2 The hex encoder/decoder

My first telecommunications file transfer took 16 minutes. It
was between a friend’s TRS-80 computer and mine, using an
analog modem over standard phone lines. The transfer
speed was 300 BPS, if you want to feign an appalled
expression.

The data transferred was plain text. It could have been
binary because, quite honestly, the phone line doesn’t care
which bits in a byte represent characters. Still, I sat for 15
minutes watching jibber jabber flow down my screen and
magically transform into a program: the original binary was
encoded as two-digit hexadecimal values, transmitted, and
then another program on my computer digested the hex
bytes, converting them back into binary data.

Another example of this hexadecimal encoding was found in
the computer magazines of the era. Articles showcased
amazing programs that you could type in; the hex bytes
were listed on the pages. Hobbyists eagerly typed byte after
byte into their keyboards, a hex decoder program gobbling
up all the digits and creating a binary program that—fingers
crossed—ran the first time and performed some wondrous
task. Those were the days.

By the way, hex encoding isn’t encryption nor is it
compression. It’s merely a way to express binary data in a
printable manner.

5.2.1 Writing a simple hex encoder/decoder

The most important part about converting ASCII—and binary
—to hex is doing so in a format that’s reliably converted
back. After all, some type of verification is required to
ensure that the data was successfully backed out of the
encoding garage.

One way to translate any information into hex is to write a
filter, such as the one shown in the next listing. (Refer to
chapter 4 if you need brushing up on filters.) The filter
processes each byte (int ch) input. The printf() statement’s
conversion character %02X outputs the byte as a 2-digit hex
value with a leading zero, if necessary. The code outputs a
newline only after all input is processed, which means the
translation is one long string of hex bytes.

Listing 5.3 Source code for hexenfilter01.c

#include <stdio.h>

int main()
{
 int ch;

 while((ch=getchar()) != EOF)
 {
 printf("%02X",ch);
 }
 putchar('\n');

 return(0);
}

Here’s a sample run at the command prompt, using standard
input (the keyboard), assuming that the program name is
hexe and it exists in the current directory:

$./hexe
Hello there, hex!
48656C6C6F2074686572652C20686578210A

Figure 5.4 illustrates what’s going on with the output, how
each character of input is translated into the hex bytes.

Figure 5.4 What’s going on with the output of a simple hex encoder

This filter can process more than plain text. You can redirect
input from any file type, including a binary executable:

$./hexe < hexe

The problem with this serial hex digit approach is that the
output is useful only to the decoder program. I wouldn’t
expect a user to type in a long string of hex digits. Such a
chore would be a nightmare.

To decode the long-string-of-text hex filter, you must write a
program that properly translates 2-digit hex values into their
byte-value equivalent. The assumption made in such a
program is that it’s receiving the exact type of information
that the encoder generates—which is a huge assumption,
and one I’d never make in any program I planned on
releasing as a practical utility.

A big part of the translation is identifying and converting
hexadecimal digits into their integer values. To accomplish
this task, I present the tohex() function, shown in the
following listing. It hunts down ASCII characters 0 through 9
and A through F, translating them into their integer
equivalents. Anything out of range generates a return value
of -1. (The function doesn’t convert lowercase hex digits,
which isn’t necessary for decoding in this example.)

Listing 5.4 The tohex() function.

int tohex(c)
{

 if(c>='0' && c<='9') ❶

 return(c-'0'); ❷

 if(c>='A' && c<='F') ❸

 return(c-'A'+0xA); ❹

 return(-1); ❺
}

❶ Eliminates the digits 0 through 9

❷ Returns the digit’s integer value

❸ Eliminates the letters A through F

❹ Returns the character’s hex value: ‘A’==0x0A

❺ All other characters return -1.

The tohex() function fights only part of the battle. The rest
of the job is to read standard input, assembling every two
hex digits into a byte. To accomplish this task, I wrote an
endless while loop, shown next. It fetches the two
characters, sticks them together, and then outputs the
resulting value, which can be binary or plain text.

Listing 5.5 Decoding the endless line of a hex filter

while(1) ❶
{

 ch = getchar(); ❷

 if(ch==EOF) break; ❸

 a = tohex(ch); ❹

 if(a<0) break; ❺

 a<<=4; ❻

 ch = getchar(); ❼
 if(ch==EOF) break;
 b = tohex(ch);
 if(b<0) break;

 putchar(a+b); ❽
}

❶ The endless loop relies upon the presence of an EOF to terminate.

❷ Reads a character and immediately . . .

❸ . . . checks for the EOF and breaks the loop if found

❹ Converts the character to a hex value

❺ Exits if the character isn’t hex

❻ Shifts value a four bits to represent the upper half of the byte in value

❼ Repeats the process for the next character, but without the shift

❽ Outputs the resulting byte

The entire batch of code is available in this book’s online
repository as hexdefilter01.c. It can be run straight-up,
assuming you know a smattering of hex values to type in:

$./hexd
48656C6C6F2C20776F726C64210A
Hello, world!

The program stops when it encounters a nonhex digit or
when the EOF is encountered, which helps match it up
perfectly with the output from the hexenfilter01.c
program. In fact—the true test of encoding and decoding—
you can pump output through both filters and end up with
the original data:

$ echo "This proves whether it works!" | ./hexe | ./hexd
This proves whether it works!

Text is echoed to standard input but first piped through the
hexe (hexenfilter01.c) program, assumed to be in the
current directory. This encoded output is then piped through
the hexd (hexdefilter01.c) program. The output is the
original text.

These simple filters process information, whipping it into one
long string of hexadecimal characters. This type of hex
encoding may work for transferring a silly game on a 300
BPS modem in the last century, but good luck getting a user
to type in all those bytes without crossing their eyes. No,
additional formatting is necessary for a better hex
encoder/decoder.

5.2.2 Coding a better hex encoder/decoder

I prefer a hex encoding method that shows its details in a
neat, orderly manner. Especially back in the old days, if you

were typing in row upon row of hex bytes published in a
computer magazine to input a program, you didn’t need to
see the Great Wall of Hex.

A good approach to hex-encoding data, especially if the
information is to be presented both for a human and a
decoding program, is to format the output in neat rows and
columns. For example:

HEX ENCODE v1.0 ❶

 54 68 69 73 20 69 73 20 61 6E 20 65 78 61 6D 70 6C 65 ❷

 20 6F 66 20 68 65 78 20 65 6E 63 6F 64 69 6E 67 20 69 ❷

 6E 20 61 20 66 6F 72 6D 61 74 74 65 64 20 6D 61 6E 6E ❷

 65 72 2E 20 49 20 61 70 70 6C 61 75 64 20 79 6F 75 20 ❷

 66 6F 72 20 62 65 69 6E 67 20 61 20 6E 65 72 64 20 61 ❷

 6E 64 20 64 65 63 6F 64 69 6E 67 20 74 68 69 73 20 65 ❷
 78 61 6D 70 6C 65 2E 0A

HEX ENCODE END ❸

❶ Title text with version number

❷ Neatly and consistently outputs rows of hex values

❸ Terminating line

This output is from a filter, though it’s formatted to be more
presentable and predictable. It still has its flaws, which I’ll
get into eventually, but it’s a better encoder despite the data
output being a series of hexadecimal digits, just like that of
the filter presented in the preceding section.

Listing 5.6 shows the source code for the Hex Encode 1.0
program. It’s based on a typical I/O filter, though it formats
output based on a certain number of hex digits per line,
shown in the code as defined constant BYTES_PER_LINE.
Variable bytes tracks the digits output, ensuring that the

hex digit pairs stay consistent line by line. This value is reset
when the number of digits output equals the defined
constant BYTES_PER_LINE, and a new line of hex digits is
output. The final line output marks the end of encoding.

Listing 5.6 Source code for hexencode01.c

#include <stdio.h>

#define BYTES_PER_LINE 18 ❶

int main()
{
 int ch,bytes;

 bytes = 0; ❷

 printf("HEX ENCODE v1.0\n"); ❸
 while((ch=getchar()) != EOF)
 {
 printf(" %02X",ch);
 bytes++;

 if(bytes == BYTES_PER_LINE) ❹
 {

 putchar('\n'); ❺

 bytes = 0; ❻
 }
 }

 printf("\nHEX ENCODE END\n"); ❼

 return(0);
}

❶ Set this value as a defined constant so that it can be updated easily.

❷ Initializes the byte counter

❸ Outputs the header line before processing standard input

❹ Checks for the end of the line

❺ If so, outputs a newline . . .

❻ . . . and resets the byte counter

❼ After processing standard input (including the EOF), outputs the tail line

The hex-encoding code works like any filter, waiting for the
EOF or, when using standard input, a press of the Ctrl+D key
to terminate. Here is sample output:

$ echo "Hello, World!" | ./hexencode
HEX ENCODE v1.0
 48 65 6C 6C 6F 2C 20 57 6F 72 6C 64 21 0A
HEX ENCODE END

Writing the encoding program is the easy part. More difficult
is decoding, where you must properly interpret the format to
convert the hex digits back into bytes. As with any complex
coding contraption, I accomplish such a task one step at a
time.

The first step to writing the hex decoder is to write a filter
that processes a line of input at a time. This proto-program
is shown in the next listing. It’s incomplete as far as
decoding is concerned. It extracts a line of text from
standard input and stores it in the line[] buffer. The buffer
is output once it’s filled, which is dull. Still, future versions of
the program will use the line[] buffer to process the
encoded values.

Listing 5.7 Source code for hexdecode01.c

#include <stdio.h>

#define BYTES_PER_LINE 18

#define LENGTH (BYTES_PER_LINE*3+1) ❶

int main()
{
 char line[LENGTH];
 int x,ch;

 x = 0;

 while((ch=getchar()) != EOF)
 {

 line[x] = ch; ❷

 x++; ❸

 if(ch=='\n' || x==LENGTH) ❹
 {

 if(line[x-1]=='\n') ❺
 line[x-1] = '\0';
 else
 line[x] = '\0';

 printf("%s\n",line); ❻
 x = 0;
 }
 }

 return(0);
}

❶ Calculates the buffer size for the number of bytes times the number of spaces used, plus one

for the null character

❷ Stores incoming characters in the buffer

❸ Increments the offset

❹ Checks for newline (as the decoded file is formatted) or a full buffer

❺ Replaces the newline with a null character; otherwise, caps the string

❻ Outputs the line, unmodified

As written, the source code for hexdecode01.c processes
any input line by line. The lines are truncated at LENGTH
number of characters, which is calculated as the exact
length of lines output by the hexencode program shown
earlier. No other processing is done on the incoming data, so
the program’s output looks exactly like whatever is input.
Here, you see the file sample.txt, created by the
hexencode program, which is output as is by the hexdecode
program:

$./hexdecode < sample.txt
HEX ENCODE v1.0

 54 68 69 73 20 69 73 20 61 6E 20 65 78 61 6D 70 6C 65
 20 6F 66 20 68 65 78 20 65 6E 63 6F 64 69 6E 67 20 69
 6E 20 61 20 66 6F 72 6D 61 74 74 65 64 20 6D 61 6E 6E
 65 72 2E 20 49 20 61 70 70 6C 61 75 64 20 79 6F 75 20
 66 6F 72 20 62 65 69 6E 67 20 61 20 6E 65 72 64 20 61
 6E 64 20 64 65 63 6F 64 69 6E 67 20 74 68 69 73 20 65
 78 61 6D 70 6C 65 2E 0A
HEX ENCODE END

The program works, so the code accomplished the first step
in the process. To improve the code, the next change
confirms that the input data is formatted properly. After all,
this is a decoding program for a specific encoded data
format. This improvement takes advantage of the hexencode
program’s first and last lines of output (shown in the sample
output): the initial line HEX ENCODE 1.0 must be detected
or else the file is improperly formatted and no further
processing is necessary. Also, the final line, HEX ENCODE
END, is tested to determine when line processing is over.

Several small chunks of code must be added to
hexdecode01.c to make these improvements. First, the
new code uses the exit() and strncmp() functions, which
require the inclusion of two header files:

#include <stdlib.h>
#include <string.h>

A new variable declaration is required, pointer r. This
pointer holds the return value from the fgets() function,
which is used to determine whether input is valid:

char *r

The variable declarations are followed by a chunk of code
designed to read the initial line of text. The fgets() function
reads the line from standard input (stdin), which is then
tested with an if statement. If the return value from fgets()
is NULL or the string doesn’t compare with the required hex-
encoding header, an error message is output and the
program terminates:

r = fgets(line,LENGTH,stdin); ❶

if(r==NULL || strncmp(line,"HEX ENCODE",10)!=0) ❷
{

 f>printf(stderr,"Invalid HEX ENCODE data\n"); ❸
 exit(1);
}

❶ The first line of input is gobbled up.

❷ fgets() returns NULL on invalid input; otherwise, the strncmp() function performs an exact

comparison on the first line of text versus the required text.

❸ An error message is sent to the standard error device to avoid output confusion.

I omitted version testing on the first line of text, which I’m
saving for a later improvement to the code, covered in the
next section.

The final chunk of text is added in the while loop, just before
the printf() statement that outputs the value of line[]. The
statements test for the terminating line in the formatted hex
encoding. If found, the loop is broken without outputting the
final line:

if(strncmp(line,"HEX ENCODE END",13)==0)
 break;

All these modifications are included in the source code file
hexdecode02.c, available in this book’s online repository.

When compiled and run, the output is similar to the earlier
program, but an improperly formatted hex encode file is
identified right away. So, if you run the program on its own
source code file, you see this output:

$./hexdecode < hexdecode02.c
Invalid HEX ENCODE data

Otherwise, the output looks the same as the first version.
The hex byte lines are read and output with no further
processing:

$./hexdecode < sample.txt
 54 68 69 73 20 69 73 20 61 6E 20 65 78 61 6D 70 6C 65
 20 6F 66 20 68 65 78 20 65 6E 63 6F 64 69 6E 67 20 69
 6E 20 61 20 66 6F 72 6D 61 74 74 65 64 20 6D 61 6E 6E
 65 72 2E 20 49 20 61 70 70 6C 61 75 64 20 79 6F 75 20
 66 6F 72 20 62 65 69 6E 67 20 61 20 6E 65 72 64 20 61
 6E 64 20 64 65 63 6F 64 69 6E 67 20 74 68 69 73 20 65
 78 61 6D 70 6C 65 2E 0A

The final improvement is to process the hex digits,
translating them into values. This change requires only one
new variable and one additional chunk of statements. The
new variable is integer hex, which can be added to the
existing int variable declarations:

int x,ch,hex;

To translate the hexadecimal character pairs into bytes, the
while loop’s printf() statement is replaced with a nested

while loop. This inner loop processes the line[] buffer,
parsing out the hex digit pairs. I use the strtok() function to
handle the parsing or “tokenizing,” if that’s what the tok
stands for. Using this function saves a lot of overhead,
reducing the code by several statements.

Within the nested while loop, a sscanf() function translates
the parsed hex digits, which are now considered a 2-
character string, into an integer value. The value generated
is sent to standard output. The process repeats until the
entire line is processed, which is the beauty of the strtok()
function:

r = strtok(line," "); ❶

while(r) ❷
{

 sscanf(r,"%02X",&hex); ❸

 printf("%c",hex); ❹

 r = strtok(NULL," "); ❺
}

❶ Parses the string (input line of text), separating its content by spaces

❷ As long as the strtok() function returns a non-NULL value, loops

❸ Translates the 2-character hex string into an integer value

❹ Outputs the integer value (which can be non-ASCII)

❺ Keeps scanning the same string

This final modification to the code is available in the
repository as hexdecode03.c. It completes the project.
The resulting program, which I’ve named hexdecode, can
properly decode the data encoded by the hexencode
program.

To put the program to the test, I encoded and then decoded
the program file itself. The first step is to encode the
program file, saving the output for use later:

$./hexencode < hexdecode > hexdecode.hex

This command processes the binary data in the hexdecode
program file. The output is redirected to a new file named
hexdecode.hex. This file is plain text but formatted as
shown throughout this section: with a header, rows of hex
digits, and a tail.

To decode the file and translate it back into binary data, use
this command:

cat hexdecode.hex | ./hexdecode > hexdecode.bin

The cat command outputs the encoded file,
hexdecode.hex, created earlier. This output (which is plain
text) is piped through the hexdecode program. The result—
now binary data, so standard output looks ugly—is
redirected into a new file, hexdecode.bin.

To ensure that both the original hexdecode program file
and the encoded/decoded data file hexdecode.bin are
identical, I use the diff command:

diff hexdecode hexdecode.bin

Because the diff program generates no output, it’s confirmed
that the original binary file was encoded into a text file of

hexadecimal character pairs and successfully decoded back
into its original binary format. The hexencode/hexdecode
filters work. Then again, I wouldn’t have written all this stuff
if they didn’t. No spoilers.

5.2.3 Adding a wee bit of error-checking

I was delighted with my original efforts for the
hexencode/hexdecode series of filters. That’s until I started
looking at the encoded information and trying to figure out
how it could be messed up. After all, upon successful
creation of any program, you as a C coder must immediately
figure out how to break it.

Consider that you’re a teen with a computer (and no social
life, natch), and you’re eager to type in the new Laser
Blaster game fresh from the pages of Compute! magazine.
You type line after line, hex digit after digit. Did you screw
up? If so, at what point did the mistake happen?

To help track entry errors, early hex dumps in magazines
offered a checksum digit at the end of each row. This
checksum is merely the total of all the byte values in the
row, sometimes modulo 0x100 to make it look like another
two digit hex value. When the user typed in the code, they
could run the checksum (or their hex decoder program
would) to determine whether a mistake was made and which
line had to be reread and whether the entire operation had
to start all over again. Yes, this is one reason Jolt Cola came
in 12-packs.

The source code for checksum01.c is shown in the next
listing. It demonstrates how to perform a simple type of
checksum. Each successive value from array hexbytes[] is
accumulated in int variable checksum. This result is output
modulo 0x100, which keeps it byte-size for consistency.

Listing 5.8 Source code for checksum01.c

#include <stdio.h>

int main()
{
 int hexbytes[] = {

 0x41, 0x42, 0x43, 0x44, 0x45, ❶

 0x46, 0x47, 0x48, 0x49, 0x4A ❶
 };
 int x,checksum;

 checksum = 0; ❷
 for(x=0; x<10; x++)
 {

 checksum += hexbytes[x]; ❸
 printf(" %02X",hexbytes[x]);
 }

 printf("\nChecksum = %02X\n",checksum%0x100); ❹

 return(0);
}

❶ Just a random assortment of hex values; 10 total

❷ Initializes the checksum variable here

❸ Accumulates the totals

❹ Outputs the checksum, but limited to a char-size value

Writing a program like checksum01.c is an approach I
often take to solving a larger programming project.
Whenever I add a new feature to any program, I want to
ensure that it works. If instead I add the feature to existing

code, the process may introduce other problems that
complicate bug hunting.

Here’s sample output from the checksum01.c program:

41 42 43 44 45 46 47 48 49 4A
Checksum = B7

More complex methods exist to calculate a checksum,
including some clever variations that can even tell you which
specific value is incorrect. But never mind!

Adding a checksum to the hexencode/hexdecode programs
requires that both source code files are modified. Yes, it’s
version 2.0, now featuring (modest) error checking. So, not
only must both programs calculate and output a checksum
byte, but the version number must also be updated and
verified. If you want to go further, you can have the
hexdecode program still decode version 1.0 files without
applying the checksum. More work to do!

EXERCISE 5.2

Update the source code to hexencode01.c to add a
checksum hex value to be output at the end of each row.
Don’t forget the final row’s checksum (hint, hint). Oh, and
update the version number to 2.0. My solution is found in
this book’s online repository as hexencode02.c.

The code for your solution to exercise 5.2 may not look
exactly as mine does, but the output should resemble
something like this:

HEX ENCODE v2.0
 54 68 69 73 20 69 73 20 61 6E 20 65 78 61 6D 70 6C 65 8F
 20 6F 66 20 68 65 78 20 65 6E 63 6F 64 69 6E 67 20 69 4A
 6E 20 61 20 66 6F 72 6D 61 74 74 65 64 20 6D 61 6E 6E 9F
 65 72 2E 20 49 20 61 70 70 6C 61 75 64 20 79 6F 75 20 12
 66 6F 72 20 62 65 69 6E 67 20 61 20 6E 65 72 64 20 61 37
 6E 64 20 64 65 63 6F 64 69 6E 67 20 74 68 69 73 20 65 8C
 78 61 6D 70 6C 65 2E 0A BF
HEX ENCODE END

This output is like the program’s first (1.0) version’s output,
but an extra hex value appears at the end of each row. This
value is the checksum.

Decoding this data, turning it back into binary, requires an
update to the hexdecode program, obviously: first, it must
check the version number. If the encoded data shows “v2.0,”
the decoder must examine the byte value and confirm that
the line was properly decoded. If not, decoding stops and
the information is flagged as invalid. And, yes, I’m making
you perform this change on your own as the next exercise.

EXERCISE 5.3

Convert the source code for hexdecode03.c to handle the
extra checksum byte set there by the program created from
hexencode01.c (exercise 5.2). You must properly account
for and use the checksum byte to ensure that each line of
the encoded text file is read properly. My solution is named
hexdecode04.c, which is available in the online repository.
Please attempt this exercise on your own before you cheat
and see how I did it. Comments in my code explain what’s

going on—and a particularly lucky turn of events that
surprised even me.

Alas, my solution isn’t perfect, as you can read in my code
comments. Further modification may help send the code in
the right direction. This is a topic I may explore on my blog
in the future, especially after I’ve eaten lots of cake.

5.3 URL encoding

Another type of text encoding, one that you’ve probably
seen before and become frightened over, is URL encoding.
Also known as percent encoding, this encoding format
preserves web page address and online form content by
using printable characters and a smattering of percent signs.
This encoding avoids some characters appearing in a URL
that may offend our internet overlords.

Specifically, for a web page address, URL encoding is used
when referencing something that may otherwise be
misinterpreted by the web server, such as a binary value,
embedded web page, spaces, or other sneaky data. URL
encoding allows this information to be sent as plain text and
properly decoded later.

As with any other encoding, you can write a URL-encoding
translation program in C. All you need to know are all the
URL encoding rules.

5.3.1 Knowing all the URL encoding rules

To help you make the connection between what you may
have seen and how URL encoding looks, here’s an example:

https%3A%2F%2Fc-for-dummies.com%2Fblog%2F

All the encoding is plain text; URL-encoded is human-
readable. Although every character could be encoded, only
special characters are presented as a 2-digit hex value
prefixed with a percent sign—for example, %24 for the dollar
sign character, ASCII code 0x24.

Though various rules exist regarding this encoding method,
the HTML 5 standard defines it as follows:

Alphanumeric characters are not translated (0 to 9, A to
Z, upper- and lowercase).

The characters - (dash), . (period), _ (underscore), and
* (asterisk) are retained.

Spaces are converted into the + (plus) character, though
the %20 code is also used.

All other characters are represented as their
hexadecimal ASCII value, prefixed with a percent sign.
If the data to encode is wider than a byte, such as a
Unicode character, it’s divided into byte-size values, each
a 2-digit hex number prefixed with a percent sign. This
final point may not be consistent for all wide-character
values.

Subtle variations on these rules exist, but you get the gist of
it. This information is adequate for you to experience the joy

of writing your own URL encoding and decoding programs.

5.3.2 Writing a URL encoder

The key to success with writing a URL-encoding program, a
filter in this incarnation, is to catch the exceptions first.
Output whatever characters need no translation just as they
are. Once these items are eliminated, all other characters
the program outputs must obey the percent-hexadecimal
encoding method.

The source code for urlencoder01.c appears in the
following listing. It’s a standard filter that processes input
one character at a time. The four URL encoding exceptions
are handled first (- . _ *) followed by the space. The
isalnum() function weeds out all alphanumeric characters.
Anything remaining is output using the %-hexadecimal
format, as shown in the code’s printf() statement.

Listing 5.9 Source code for urlencoder01.c

#include <stdio.h>
#include <ctype.h>

int main()
{
 int ch;

 while((ch=getchar()) != EOF)
 {

 if(ch=='-' || ch=='.' || ch=='_' || ch=='*') ❶
 putchar(ch);

 else if(ch==' ') ❷
 putchar('+');

 else if(isalnum(ch)) ❸
 putchar(ch);
 else

 printf("%%%02X",ch); ❹
 }

 return(0);
}

❶ These characters are okay; output as-is.

❷ The space is output as a + character.

❸ Alphanumeric characters are output as-is.

❹ The %% is required to output a percent sign, followed by a 2-digit hexadecimal value, prefixed

by a leading zero if necessary.

Here is a sample run of the program, which I’ve named
urlencoder:

$./urlencoder
https:/ /c-for-dummies.com/blog/
https%3A%2F%2Fc-for-dummies.com%2Fblog%2F%0A^D$

Here, the filter is run at the prompt, so all keyboard input
appears in the output. This approach explains why you see
the %0A character for the newline at the end of the final line,
followed by the Ctrl+D key (^D) to terminate input. The
command prompt, $, appears immediately after.

If you’re used to seeing URL encoding, and understand the
basic parts of a URL, you may recognize a few common
codes:

%3A for the colon, :

%2F for the forward slash, /

Other codes I see often are:

%3F for the question mark, ?

%26 for an ampersand, &

Of course, beyond being a nerd, you need not memorize
these common URL encodings. Instead, you can write your
own URL decoder, which is also a sign of being a nerd but
with a potential to garner an income.

5.3.3 Creating a URL decoder

I hope you won’t find creating a URL decoder too difficult.
Unlike the encoder, the only incoming character the filter
should care about is the percent sign. Oh, sure, you could
test for “illegal” characters such as those out of range; I’ll
leave the extra coding up to you.

The key to weeding out the hex digits is to scan for the %
character. Once it’s encountered, you can use a function like
tohex(), covered way back in section 5.2.1, to translate the
next two incoming hex digits. Again, more testing can be
done to determine whether the characters were legitimate
hexadecimal digits—but you get the idea.

Presented in the next listing is my quick-and-dirty solution to
the URL decoder. It uses a modified version of the tohex()
function shown earlier; this one also checks for lowercase
hexadecimal digits. Otherwise, the only “bad” incoming
character this code scans for is the EOF.

Listing 5.10 Source code for urldecoder01.c

#include <stdio.h>

int tohex(int c)

{
 if(c>='0' && c<='9')
 return(c-'0');
 if(c>='A' && c<='F')
 return(c-'A'+0xA);

 if(c>='a' && c<='f') ❶
 return(c-'a'+0xA);
 return(-1);
}

int main()
{
 int ch,a,b;

 while((ch=getchar()) != EOF)
 {

 if(ch=='%') ❷
 {
 ch = getchar();

 if(ch==EOF) break; ❸

 a = tohex(ch); ❹

 ch = getchar(); ❺
 if(ch==EOF) break;
 b = tohex(ch);

 putchar((a<<4)+b); ❻
 }
 else
 putchar(ch);
 }

 return(0);
}

❶ Modified to add lowercase

❷ Checks for the % sign and grabs the next two characters

❸ Bails on EOF

❹ Converts the hex digit to an integer

❺ Grabs the next character

❻ Outputs the proper character value

The program created from the url_decoder01.c source
code translates URL encoding, dealing with the % values as
they’re encountered. Its major problem, however, is that it

doesn’t know how to deal with improperly formed URL-
encoded text. Some error checking is in order . . . but I’ve
reached my assigned page count for this chapter—plus, it’s
almost midnight and I’m out of Ritalin.

EXERCISE 5.4

Your task is to improve the URL decoder shown in listing
5.10. To do so, ensure that an unwanted character doesn’t
filter in. When such an offense occurs, exit the program with
an appropriate error message. Further, check the return
value from the tohex() function to ensure that it properly
reads hexadecimal values.

You can find my solution in this book’s online source code
repository. The file is named urldecoder02.c. Please try
this exercise on your own. Don’t cheat. You know the drill.

6 Password generators

Are you weary of the prompts? You know when some
website asks you to apply a password to your account?
“Ensure that it has at least one uppercase letter, one
number, a symbol, and some hieroglyphics.” Or, “Here’s a
suggested password that you’re incapable of typing, let
alone committing to memory.” It’s exasperating.

I hope you recognize the importance of applying a password
to a digital account. And I trust that you’re familiar with the
common rules: don’t use easily guessed passwords. Don’t
use any words or terms easily associated with you. Don’t
set the same password for every account. These
admonishments are tedious but important.

Setting a solid password is a must these days. As a C
programmer, you can bolster your weary password arsenal
by:

Understanding password strategy

Creating basic, jumble passwords

Ensuring the password has the required characters

Taking a detour in the world of Mad Libs
Using random words to build passwords

At its core, of course, a password is nothing more than a
string. Authentication is a case-sensitive, character-by-

character comparison of the input password with a
password stored in an encrypted database. True, the
process is more complex than this; I assume at some point
the process involves a squirrel on a treadmill. Still, once
decrypted, it’s that good old comparison that unlocks the
digital door. The point of setting a good password is to
create a key no one else knows about or can even guess.

6.1 Password strategies

Unix systems have always had password requirements for
accounts. I mean, look at Unix nerds! Do you trust them?
Better question: did they trust each other? Probably not,
because the Unix logon has always prompted for a
username and password.

Despite knowing about computer security for decades,
Microsoft didn’t require a password for Windows until
Windows 95 escaped the castle laboratory in 1996. Even
then, one of the most common emails I received from users
at the time would ask how to avoid typing in the Windows
password. Unlike Unix and other multiuser systems, PC
users were unaccustomed to security. Proof of their
ignorance is the proliferation of viruses in the 1990s, but I
digress. Windows users just wanted to access the computer.
Many of them avoided passwords on purpose.

Enter the internet.

As more of our lives are absorbed by the digital realm,
creating and using passwords—serious passwords—
becomes a must. Yes, at first, these were silly passwords
just to meet the minimum requirement. But as the Bad
Guys grew more sophisticated, passwords required more
complexity.

6.1.1 Avoiding basic and useless passwords

Lazy Windows 95 users must still be with us. Inept
passwords are used every day. Silly humans. You’ll find a
list of the top 10 most common passwords in table 6.1.
These aren’t even the silly or weak passwords—just the
most common. Dwell on that thought for a moment.

Table 6.1 Stupid passwords

Rank Password Comment

1. 123456 The bare minimum for a

“must be six characters

long” password.

2. 123456789 A “more than six

characters long”

password.

3. qwerty Keyboard, top row, left.

4. password An all-time classic. No

one would guess!

5. 12345 Some people are just

lazy.

6. qwert123 Must have letters and

numbers.

7. 1q2w3e Keyboard, numbers and

characters, top left.

8. 12345678 More unclever numbers.

9. 111111 Repetitive unclever

numbers.

10. 1234567890 Probably using the

numeric keypad for this

baby.

The reason using these passwords is useless is that every
Bad Guy knows them and tries them first. And you know
what? Sometimes they work! Lots of cases documented
every day show some high-and-mighty official whose online
security is compromised because the bozo was lazy and
used a convenient password. It seems like such a person
deserves to be hacked.

Not listed in table 6.1, but still incredibly stupid, are using
the following personal information tidbits foolishly in or as a

password:

Your birth year

The current year

Your first name

Your favorite sports team’s name

A curse word

The word sex
Your city or street name or street number

The list goes on. These items are important to avoid—and
why those quizzes on social media ask you such silly
questions. Trust me—confessing who your best friend was in
high school doesn’t tell Facebook which Star Wars character
you are any more than rolling dice does. The Bad Guys are
smart. Humans are dumb. The common answers people
provide are used later to crack their passwords.

Knowing these tricks is important when crafting a better
password. After all, it’s easy for someone to take a stab at
what might be your password than to brute-force
combinations of letters, numbers, and symbols to try to
guess a password. Be smart.

EXERCISE 6.1

Write a program that brute-force guesses the password
password. Have your code spin through all the letter
combinations aaaaaaaa through zzzzzzzz until it matches

password. Eventually it will, of course, but the purpose of
this exercise is to see how long the process takes. The
solution I coded takes about 8 minutes to crack the
password on my fastest computer (generating no output).

My solution is titled brutepass01.c, and it’s available in
this book’s online repository. It uses recursion to spin
through letters of the alphabet like miles turning on an
odometer. Comments in the code explain my madness.

6.1.2 Adding password complexity

To help you be smart when it comes to passwords, your
kind and loving system administrators have devised a few
rules. These started simple:

Have a password. Please.

Then complexity was added:

Your password must contain both letters and numbers.

As the Bad Guys grew more adept at guessing passwords,
or applying brute-force methods, more details were added:

Your password must contain at least one uppercase letter.

Your password must be at least eight (or more) characters long.

Your password must contain a symbol.

These suggestions add complexity, making it difficult to
guess or brute-force the password. Even then, some
websites offer even more annoying specifics. For example,

figure 6.1 shows the rules for creating a new password at
my bank. These rules are about as complex as they can get.

Figure 6.1 Bank password restrictions are about as obnoxious as you

can get.

To add even more security, many services employ two-
factor authentication. This technique involves a confirmation
code sent to your cell phone or a code value generated by
an app or special device. This extra level of security ensures
that even if your password is compromised, the second-
factor security key keeps your information safe.

6.1.3 Applying the word strategy

Studies have shown that your typical jumbled password is
no better at thwarting the Bad Guys than a password
consisting of several words slung together and separated by
numbers or symbols. For example, this password:

fbjKehL@g4jm7Vy$Glup

offers no added security over this one:

Bob3monkeys*spittoon

The second password has the advantage of being easier to
remember and type. Yet when put to the test, password-
cracking software takes the same if not longer amount of
time to break the second, more readable password than the
useless jumble.

This better approach to password creation is what I call the
word strategy: string together three or more words, mix in
some upper- and lowercase letters, add numbers and
symbols. In fact, the password requirements shown in
figure 6.1 allow both password types shown in this section,
but the word strategy is better.

The word strategy also has the advantage of hashing. For
example, you can key specific passwords to the sites and
services you frequent. Should a password become
compromised, you would immediately identify the source.
Such a thing happened to me, when I received an email
saying that “I know your password.” The Bad Guy listed the
password—which was one I’ve used. I recognized it as my
old Yahoo! password, which I changed after hackers stole
the Yahoo! user database. I knew the password was
compromised, and, based on the words used in the
password, I knew the source. I wasn’t surprised or
concerned by this revelation.

6.2 The complex password jumble

You may think it’s relatively easy to write code that outputs
your typical, jumbled text password. It is. You may have
written such a program in your digital youth: a silly
random-character generator. But like all things easy, it’s not
a really good way to code a password program. Don’t let
the silliness of the exercise dissuade you.

6.2.1 Building a silly random password program

Listing 6.1 shows my random password generator, a silly
version titled randomp01.c because the filename
silly.c is already taken on my computer. It slices off the
printable character ASCII spectrum from the exclamation
point to the tilde, codes 33 through 126. (Refer to chapter 5
for fun details on ASCII.) This value sets the random
number range. The character value output is added to the
exclamation point character, which brings it back into
printable range.

Listing 6.1 Source code for randomp01.c

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

int main()
{
 int x;
 char ch;

 const int length = 10; ❶

 srand((unsigned)time(NULL));

 for(x=0; x<length; x++)
 {

 ch = rand() % ('~' - '!' + 1); ❷

 putchar(ch+'!'); ❸
 }
 putchar('\n');

 return(0);
}

❶ Makes the password 10 characters long

❷ Sets the range of random values to printable characters

❸ Outputs the printable character

The program’s output is delightfully random but practically
useless as a password:

aVd["o_rG2

First, good luck memorizing that. Second, better luck typing
it. Third, hope that the website allows all the characters’
output; the double-quote is suspect. Obviously, some
conditions must be applied to the output.

6.2.2 Adding conditions to the password program

Most of those random password generator routines on the
internet produce a jumble of letters, numbers, and symbols,
like a festive salad of nonsense but—like real salad—
supposedly healthy for you. Obviously, some sort of
intelligent programming is going on, as opposed to silly
random character generation shown in the preceding
section.

A generated password’s characters can still be random, but
they must be typed: uppercase, lowercase, numbers,
symbols. The quantity of each depends on the password
length, and the ratio of character types varies.

To improve the silly password program and make it smarter,
consider limiting the password’s contents to the following:

One uppercase letter

Six lowercase letters

One number
Two symbols

The total number of characters is 10, which is good for a
password.

Random letters and numbers are easy to generate, but to
avoid running afoul of any character restrictions, I would
offer that these symbols are safe, though you’re always free
to create your own list:

! @ # $ % * _ -

The task now is to limit the password to the restrictions
given.

EXERCISE 6.2

Write code that generates a random password limited to the
characters listed in this section (10 total). Name the code
randomp02.c. Include in your solution these four

functions: uppercase(), lowercase(), number(), and
symbol(). The uppercase() function returns a random
character in the range from A to Z. The lowercase() function
returns a lowercase character, A to Z. The number()
function returns a character 0 through 9. And the symbol()
function plucks a random character from an array of safe
symbols and returns it. The password is output in the
main() function, which uses this pattern: one uppercase
letter, six lowercase letters, one number, two symbols.

As a tip, I use defined constants to create the pattern:

#define UPPER 1
#define LOWER 6
#define NUM 1
#define SYM 2

These defined constants save time later, as the code is
updated.

6.2.3 Improving upon the password

My solution to exercise 6.2 generates output like this:

Tmxlqeg8#@
Gdnqgrs2@%
Whizxxb9-*

These valiant attempts at generating a random, jumbled
password are successful but uninspired. Further, they might
be easily compromised in that their pattern is predictable:
they all start with an uppercase letter, six lowercase letters,

a number, and finally two symbols. Writing a password-
cracking program would be easier knowing this pattern.

A better way to output the random characters is to scramble
them. For this improvement, the password must be stored
in an array as opposed to output directly (which is what I
did for my solution to exercise 6.2). So, the first step in
making the conversion from randomp02.c to
randomp03.c is to store the generated password—still
using the same functions and pattern as before.

Listing 6.2 shows the main() function from my updated
code randomp03.c. The password[] buffer is created,
equal to the number of characters stored—all defined
constants created earlier in the code—plus one for the
terminating null character. I replaced the for loops in my
version of randomp02.c with while loops, which pack the
array with the necessary characters. The string is
terminated and then output.

Listing 6.2 Improvements to the main() function for randomp03.c

int main()
{

 char password[UPPER+LOWER+NUM+SYM+1]; ❶
 int x;

 srand((unsigned)time(NULL)); ❷

 x = 0; ❸

 while(x<UPPER) ❹
 password[x++] = uppercase();

 while(x<UPPER+LOWER) ❺
 password[x++] = lowercase();

 while(x<UPPER+LOWER+NUM) ❻

 password[x++] = number();

 while(x<UPPER+LOWER+NUM+SYM) ❼
 password[x++] = symbol();

 password[x] = '\0'; ❽

 printf("%s\n",password); ❾

 return(0);
}

❶ Necessary storage for the password, plus one for the null character

❷ Seeds the randomizer

❸ Initializes the index variable x

❹ Fetches the uppercase letters and puts them in the password[] array

❺ Fetches the lowercase letters

❻ Fetches the numbers

❼ Fetches the symbols

❽ Caps the string with a null character

❾ Outputs the password

The program’s output is unchanged, but this incremental
step stores the password. With the password stored in a
buffer, it can be passed to a new function, scramble(),
which randomizes the characters in the buffer.

My scramble() function is shown in listing 6.3. It uses a
temporary buffer key[] to determine which characters
need to be randomized. This array is initialized with null
characters. A while loop spins, generating random values in
the range of 0 through 9—the same as the number of
elements in both the passed array p[] and local array
key[]. If a random element contains the null character, a
character from the passed array is stored in that position.

The while loop repeats until all characters from the passed
array are copied. A final for loop updates the passed array.

Listing 6.3 The scramble() function to randomize characters in an array

void scramble(char p[])
{

 const int size = UPPER+LOWER+NUM+SYM+1; ❶
 char key[size];
 int x,r;

 for(x=0; x<size; x++) ❷
 key[x] = '\0';

 x = 0; ❸

 while(x<size-1) ❹
 {

 r = rand() % (size-1); ❺

 if(!key[r]) ❻
 {

 key[r] = p[x]; ❼

 x++; ❽
 }
 }

 for(x=0; x<size; x++) ❾
 p[x] = key[x];
}

❶ Calculates the buffer size

❷ Initializes the array with null characters

❸ The index into the passed array

❹ Loops until the passed array has been fully processed (minus one for the null character)

❺ Generates a random value, 0 through the buffer size (minus one for the null character)

❻ If the random value at element r is a null character...

❼ . . . it copies the original character to its new, random position.

❽ Updates the index

❾ Copies the randomized array into the passed array

To call the scramble() function, update the code from
randomp03.c. First add the scramble() function
somewhere before the main() function. This position
negates the need to prototype the function earlier in the
source code file. Then insert the following line before the
printf() statement in the main() function:

scramble(password);

The full source code is available as randomp04.c in the
book’s online repository. Here is sample output:

z%Wea#zhuX

Yay! It’s still a horrible password to memorize or type, but
it’s blessedly randomized.

Further modification to the code can be made to adjust the
password length and the specific number of the different
type of characters. I had originally thought of presenting
command-line switches to set the number of options and
overall password length. For example:

pass_random -u1 -l6 -n1 -s2

These arguments set one uppercase letter, six lowercase
letters, one number, and two symbols. These options allow
for more flexibility in creating the password. You could take
the idea further and specify which symbols to include in the
random password. Oh! I could go nuts coding this thing, but

personally I prefer to use words in my passwords, so I’m
moving on to the next section.

6.3 Words in passwords

I gave up on jumbled passwords years ago. My preferred
approach is to string a few random words together, along
with the requisite capital letter and symbol, and at the
desired length. This approach is far easier to remember and
type. In fact, I still remember my old CompuServe
password, with was just two words separated by a number.
A password generator that spews forth words and the
proper quantities of symbols and such is far more useful
and interesting to code than the random password
generator.

6.3.1 Generating random words, Mad Libs style

To build a random word password generator, you need a
routine that spits out random words. If they’re to be
legitimate words, you most likely need some type of list
from which to extract the words. Writing a word-generating
function is a good approach, plus it gives you an
opportunity to create a list of words you like, silly words, or
words you frequently say in Walmart.

Listing 6.4 highlights my add_word() function as it appears
in the source code file randwords01.c. The function
contains a dozen words (actually pointers to strings) in

array vocabulary[]. Variable r holds a random value in
the range of zero to the number of elements in the array:
sizeof(vocabulary) returns the number of bytes
occupied by the array. This value is divided by
sizeof(char *), which is the size of each element in the
array—a char pointer. The result is 12, which means r holds
a random number from 0 through 11. This expression
ensures that no matter how many words are in the array,
the random number calculated is in the proper range. The
function returns the random array element, a pointer to a
string.

Listing 6.4 The add_word() function in randwords01.c

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

#define repeat(a) for(int x=0;x<a;x++) ❶
const char *add_word(void)
{
 const char *vocabulary[] = {
 "orange", "grape", "apple", "banana",
 "coffee", "tea", "juice", "beverage",
 "happy", "grumpy", "bashful", "sleepy"
 };
 int r;

 r = rand() % (sizeof(vocabulary)/sizeof(char *)); ❷

 return(vocabulary[r]); ❸
}

int main()
{
 srand((unsigned)time(NULL));

 repeat(3) ❹
 printf("%s ", add_word());
 putchar('\n');

 return(0);
}

❶ This macro makes the for loop more readable in the main() function.

❷ Generates a random value, zero through the number of elements in the array (minus one)

❸ Returns the random element—the word

❹ Outputs three random words

The code calls the add_word() function thrice, though no
guarantee is provided to prevent the same word from
repeating, as shown in this sample output:

banana grape grape

As a C programmer, you could add code to prevent
duplicates from appearing in the output, but I would offer
that a repeated word is also random. Still, this code is
merely one step in a longer process.

After writing the randwords01.c code, I felt inspired to
ape the famous Mad Libs word game. Mad Libs is a
registered trademark of Penguin Random House LLC and is
fairly used here for educational purposes. Please don’t sue
me.

The first step in coding a Mad Libs program, all while
avoiding a lawsuit, is crafting several functions along the
lines of add_word() used in the randwords01.c code. You
must write one function for each word category as found in
a Mad Libs: add_noun(), add_verb(), and add_adjective(),
for example. Each function is populated with its own
vocabulary[] array, packed with the corresponding word

types: nouns, verbs, and adjectives. The main() function
calls each function as required to fill in the blanks for a Mad
Libs-like sentence, carefully crafted to avoid legal peril, such
as the deliberately weak and unfunny example shown here.

Listing 6.5 The main() function from madlib01.c

int main()
{

 srand((unsigned)time(NULL)); ❶

 printf("Will you please take the %s %s ", ❷

 add_adjective(), ❸

 add_noun() ❹
);

 printf("and %s the %s?\n", ❺

 add_verb(), ❻

 add_noun() ❼
);

 return(0);
}

❶ Seeds the randomizer

❷ Outputs the first part of the sentence

❸ Fills in the adjective blank

❹ Fills in a noun blank

❺ Outputs the last part of the sentence

❻ Fills in the verb blank

❼ Fills in another noun blank

Yes, my Mad Libs prototype is embarrassing. If you really
want to treat yourself to a good Mad Libs, obtain one of the
books from Leonard Stern and Roger Price because they
won’t sic their lawyers on me. Still, the code works, fetching
a random word from each of the functions. The output is

less than hilarious, which, like any Mad Libs game, depends
on good word choices:

Will you please take the ripe dog and slice the necklace?

One way to add a richer variety of words to the various
functions is to take the code a step further and read words
from a vocabulary text file. For example, a noun.txt file
contains dozens or hundreds of nouns, each on a line by
itself. This format keeps the list accessible, easy to view and
edit. Similar files could be created for other word types:
verb.txt, adjective.txt, and so on.

To read through the files and pluck out a random word, you
can borrow a technique presented in chapter 2: the “pithy
saying” series of programs ended with code that read from
a text file, stored all the lines from the file, and then
selected a random line of text for output. This approach can
be used in an update to the Mad Libs program, where three
separate files are scanned for random words. The code from
chapter 2 is incorporated into the build_vocabulary()
function found in my updated Mad Libs program.

In the next listing, you see the main() function from my
updated Mad Libs program, madlib02.c. To handle
numerous problems, and effectively shunt a lot of the work
to the build_vocabulary() function, I chose to use structures
to hold information about the various types of words. The
output is lamentably the same pathetic text generated by
the madlib01.c program.

Listing 6.6 The main() function from madlib02.c

int main()
{

 struct term noun = {"noun.txt",NULL,0,NULL}; ❶
 struct term verb = {"verb.txt",NULL,0, NULL};
 struct term adjective = {"adjective.txt",NULL,0, NULL};

 build_vocabulary(&noun); ❷
 build_vocabulary(&verb);
 build_vocabulary(&adjective);

 srand((unsigned)time(NULL));

 printf("Will you please take the %s %s ",

 add_word(adjective), ❸
 add_word(noun)
);
 printf("and %s the %s?\n",
 add_word(verb),
 add_word(noun)
);

 return(0);
}

❶ Structures are declared and defined, saving lotsa code.

❷ The build_vocabulary() function reads words from a file and creates a list in memory with

each word indexed. This information is saved in the term structure specific to each word

type.

❸ The add_word() function reads well in English, making the code understandable.

The main() function begins by defining three term
structures to hold and reference the types of words to fill in
the Mad Libs. Each member in the structure is defined, with
NULL constants set for the two pointer items.

Here is the unfunny output:

Will you please take the pretty car and yell the motorcycle?

You can view the entire source code file found in this book’s
online repository. It’s named madlib02.c. It helps if you
have this code visible in your editor as I discuss the details
over the next few pages.

The workhorse in the madlib02.c code is the
build_vocabulary() function. It relies upon the term
structure, which is defined externally so that it’s visible to
all the functions in the source code file:

struct term {

 char filename[16]; ❶

 FILE *fp; ❷

 int items; ❸

 char **list_base; ❹
};

❶ A string representing the filename to open

❷ A FILE pointer referencing the open file listed in the filename member

❸ The total number of words extracted from the file

❹ A block of memory containing pointers referencing each word extracted from the file

By throwing these items in a structure, each call to the
build_vocabulary() function needs only one argument. The
build_vocabulary() function is based on the source code for
pithy05.c (covered in chapter 2). Major retooling is done
to use the passed structure members instead of local
variables, but most of the code remains the same. Here is
the prototype:

void build_vocabulary(struct term *t);

The structure is passed as a pointer, struct term *t,
which allows the function to modify the structure’s members
and have the updated data retained. Otherwise, when the
structure is passed directly (not as a pointer), any changes
are abandoned when the function terminates. Because a
pointer is passed, structure pointer notation (->) is used
within the function.

The build_vocabulary() function performs these tasks:

1. Open the t->filename member, saving the FILE
pointer in variable t->fp upon success.

2. Allocate storage for the t->list_base member, which
eventually references all strings read from the file.

A while loop reads each string (word) from the file. It
performs these tasks:

1. Fetches the string and double-checks to confirm the
EOF isn’t encountered.

2. Allocates memory for the string.

3. Copies the string into allocated memory.

4. Removes the newline (\n) from the string. This step
isn’t found in the original pithy05.c code. It’s
required to ensure that the word returned doesn’t
contain a newline.

5. Confirms that the t->list_base buffer isn’t full. If so,
reallocates the buffer to a larger size.

The last step takes place after the while loop is done:

6. Closes the open file.

At the end of the function, the items member of the
structure contains a count of all the words read from the
file. The list_base member contains the addresses for
each string stored in memory.

The main() function in listing 6.6 also references the
add_word() function. This function doesn’t require a pointer
as an argument because it doesn’t modify the structure’s
contents. Here is the add_word() function:

 char *add_word(struct term t) ❶
{
 int word;

 word = rand() % t.items; ❷

 return(*(t.list_base+word)); ❸
}

❶ The function returns a char pointer, a string.

❷ Generates a random value ranging from zero to the number of items

❸ References a random word stored at t.list_base, and returns its address

Most of the add_word() function exists in the original
pithy05.c code. It was set into a function here because
it’s called with different structures, each one representing a
grammatical word category.

These programs can be used in any application where words
stored in a file must be fetched and referenced as a
program runs. By keeping the words stored in memory, the
list can be accessed multiple times without having to reread
the file.

6.3.2 Building a random word password generator

You can craft two different types of random word password
programs based on the two versions of the Mad Libs
programs shown in the preceding section. The first program
(madlib01.c) uses arrays to store a series of random
words. For more variety, however, you can use the second
(madlib02.c) code to take advantage of files that store
your favorite password words.

The easy version of the random word password generator
works like the earlier randomp series of programs,
specifically from the source code for randomp04.c. The
goal is to create functions that return specific password
pieces: a random word, a random number, and a random
symbol. The words should already be mixed case. My
version is named passwords01.c, and it’s found in this
book’s online repository. Open it in an editor window so that
you can follow along in the text.

The number() and symbol() functions are retained from the
earlier code, though each now returns a string as opposed
to a single character. A static char array holds the character
to return as two-character string: The random character is

saved in the first element, and a null character is saved in
the second, making the array a string. Here are both
functions:

char *number(void)
{

 static char n[2]; ❶

 n[0] = rand() % 10 + '0'; ❷

 n[1] = '\0'; ❸

 return(n);
}

char *symbol(void)
{
 char sym[8] = "!@#$%*_-";

 static char s[2]; ❶

 s[0] = sym[rand() % 8]; ❹

 s[1] = '\0'; ❸

 return(s);
}

❶ The static array’s contents are retained when the function terminates.

❷ Generates a random character, 0 through 9, storing it as the first element of array n[]

❸ Caps the string with a null character

❹ Plucks a random character from the sym[] array and sets it as the first element of array

n[]

To generate words for the password, I borrowed the
add_noun() function from madlib01.c, changing it to
reflect a series of random words with a few uppercase
letters thrown in:

char *add_word(void)
{
 char *vocabulary[] = {
 "Orange", "Grape", "Apple", "Banana",

 "coffee", "tea", "juice", "beverage",
 "happY", "grumpY", "bashfuL", "sleepY"
 };
 int r;

 r = rand() % 12;
 return(vocabulary[r]);
}

What I didn’t need from the randomp04.c code were the
functions scramble(), uppercase(), and lowercase(). The
main() function, shown here, assembles everything into the
final password string.

Listing 6.7 The main() function from passwords01.c

int main()
{

 char password[32]; ❶

 srand((unsigned)time(NULL));

 password[0] = '\0'; ❷

 strcpy(password,add_word()); ❸

 strcat(password,number()); ❹

 strcat(password,add_word()); ❺

 strcat(password,symbol()); ❻

 strcat(password,add_word()); ❼

 printf("%s\n",password);

 return(0);
}

❶ Storage where the password is built

❷ Initializes the string so that the strcpy() function doesn’t puke

❸ Copies the first word generated into the password[] array

❹ Appends a number

❺ Appends the second word

❻ Appends a symbol

❼ Appends the final word

Here is a sample run:

juice9grumpY%Grape

Nothing is done in the code to prevent a word from being
repeated, and the output might be missing an uppercase
letter. But if you don’t like the words, add more by
expanding the vocabulary[] array in the add_word()
function. Or, better, devise a system where you have files
containing words you like to use in a password, like the way
the second Mad Libs program works. In fact, you can use
the same word files, noun.txt, verb.txt, and
adjective.txt.

My source code for passwords02.c pulls in elements from
both passwords01.c and madlib02.c—specifically, the
build_vocabulary() function that reads words from a file and
stores them in memory.

You can see how both source code files are merged by
examining the main() function from passwords02.c in the
following listing. Yes, I’m being lazy with this code, where
the first part of the main() function pulled from the Mad
Libs program and the second part from passwords02.c.
The output is a string containing three random words, a
random number, and a random symbol.

Listing 6.8 The main() function from passwords02.c

int main()
{

 char password[32]; ❶

 struct term noun = {"noun.txt",NULL,0,NULL}; ❷
 struct term verb = {"verb.txt",NULL,0,NULL};
 struct term adjective = {"adjective.txt",NULL,0,NULL};

 build_vocabulary(&noun);
 build_vocabulary(&verb);
 build_vocabulary(&adjective);

 srand((unsigned)time(NULL));

 password[0] = '\0'; ❸
 strcpy(password,add_word(noun));
 strcat(password,number());
 strcat(password,add_word(verb));
 strcat(password,symbol());
 strcat(password,add_word(adjective));

 printf("%s\n",password);

 return(0);
}

❶ Stolen from the first passwords code

❷ Stolen from madlib02.c

❸ Always cap a string you build!

Here is a sample run, which isn’t any different from the
passwords01.c code’s program output:

eyeball9yell!ripe

On a positive note, this password output is far more
hilarious than the output from any of my Mad Libs
programs. Still, it has a password problem: where is the
uppercase letter?

EXERCISE 6.3

Add another function to the source code from
passwords02.c to create a new source code file,
passwords03.c. This new function, check_caps(),
examines a string for an uppercase letter. If no uppercase
letter is found, the function converts a lowercase letter to
uppercase at some random position within the string. My
solution is available online as passwords03.c, but try this
exercise on your own before you sneak off to see how I did
it.

7 String utilities

It’s often said, and rightly so, that the C programming
language lacks a string data type. Such a thing would be
nice. It would be easier to guarantee that every string in a
program is bona fide and that all string functions work
cleanly without flaw. But such claims are untrue. A string in
C is a character array, weakly typed, and easy for any C
programmer to screw up.

Yes, handy string functions exist in C. A crafty coder can
easily cobble together any string function, imitating what’s
available in some other, loftier programming language but
lacking in C. Still, any creative approach to handling an
absent string function in C still must deal with the
language’s myopic perception of the string concept.
Therefore, some extra training is required, which includes:

Reviewing what’s so terrible about strings in C

Understanding how string length is measured

Creating interesting and useful string functions

Building your own string function library
Exploring make-believe object-oriented programming

Despite what you can do with strings in C, the grousing and
disdain remains—and it’s legitimate. C strings are squishy
things. It’s easy to mess up when you create or manipulate
a string, even for experienced programmers. Still, strings

exist as a valid form of data and are necessary for
communications. So, prepare to bolster your string
knowledge and build up your programming arsenal.

7.1 Strings in C

That which you call a string doesn’t exist in C as its own
data type, like an int or a double. No programmer worries
about malforming an integer or incorrectly encoding the
binary format of a real number. These data types—int,
double, and even char—are atoms. A string is a molecule. It
must be constructed specifically.

Technically, a string is a special type of character array. It
has a beginning character, located at some address in
memory. Every following character in memory is part of the
string, up until the null character, \0, is encountered. This
ad hoc structure is used as a string in C—though it remains
squishy. If you require further understanding of the squishy
concept, table 7.1 provides a comparative review.

Table 7.1 Squishy things

Thing Why it’s squishy

Street

intersection limit

line

Because few cars stop at the limit line. Most just roll through.

Grandpa saying

“No”

Just give it time. Making a cute face helps.

Building permits Different wait times apply, depending on how friendly you are

with the mayor.

Food Doesn’t mean the same thing on an airplane.

Personality Good to have yourself; bad for a blind date.

Obese Actuarial tables haven’t been updated since the 1940s.

Fame on social

media

Wait a few hours.

Sponge cake By design.

7.1.1 Understanding the string

It’s important to separate what you believe to be a string
from a character array. Though all strings are character
arrays, not all character arrays are strings. For example:

char a[3] = { 'c', 'a', 't' };

This statement creates a char array a[]. It contains three
characters: c-a-t. This array is not a string. The following
char array, however, is a string:

char b[4] = { 'c', 'a', 't', '\0'};

Array b[] contains four characters: c-a-t plus the null
character. This terminating null character makes the array a

string. It can be processed by any C language string
function or output as a string.

To save you time, and to keep the keyboard’s apostrophe
key from wearing out, the C compiler lets you craft strings
by enclosing characters in double quotes:

char c[4] = "cat";

Array c[] is a string. It consists of four characters, c-a-t,
plus the null character added automatically by the compiler.
Though this character doesn’t appear in the statement, you
must account for it when allocating storage for the string—
always! If you declare a string like this:

char d[3] = "cat";

the compiler allocates three characters for c-a-t, but none
for the null character. This declaration might be flagged by
the compiler—or it might not. Either way, the string is
malformed, and, minus the terminating null character,
manipulating or outputting the string yields unpredictable
and potentially wacky results.

Because the compiler automatically allocates storage for a
string, the following declaration format is used most often:

char e[] = "cat";

With empty brackets, the compiler calculates the string’s
storage and assigns the proper number of elements to the
array, including the null character.

Especially when building your own strings, you must take
care to account for the terminating null character: storage
must be allocated for it, and your code must ensure that
the final character in the string is the \0.

Here are some string considerations:

When allocating string storage, always add one for the
null character. Strings are allocated directly as a char
array declaration or via a memory-allocation function
such as malloc().

When using string storage, remember that the final
character in storage must be the null character, whether
or not the buffer is full.

The fgets() function, often used to read string input,
automatically accounts for the null character in its
second argument, size. So, if you use the value 32 as
the size argument in an fgets() statement, the
function stores up to 31 characters before it
automatically adds the null character to terminate the
input string.

Without the terminating null character, string functions
continuing processing bytes until the next random null
character is encountered. The effect could be garbage
output or—worse—a segmentation fault.

One problem with forgetting the null is that often
memory is already packed with null characters. A buffer
can overflow, but the random null characters already in
memory prevent output from looking bad—and from
your mistake being detected. Never rely upon null
characters sitting in memory.
The null character is necessary to terminate a string but
not required. The compiler doesn’t check for it—how
could it? This lack of confirmation, of string
containment, is what makes strings squishy in C.

7.1.2 Measuring a string

The title of this section has a completely different definition
for my grandmother. No, she doesn’t code, but she
crochets. The strings are longer in crocheting, but in
programming you don’t use the word skein. Instead, you
fuss over character count.

As stored in memory, a string is one character longer than
its text, this extra character being the null character
terminating the string. It’s part of the string but not “in” the
string.

According to the strlen() function, the string is only as long
as its number of characters, minus one for the nonprinting
null character.

So, how long is the string?

The man page for the strlen() describes its purpose:

The strlen() function calculates the length of the string . . .
excluding the terminating null byte ('\0').

The strlen() counts the number of characters in the string,
with escaped characters counted as a single character. For
example, the newline \n is a single character, though it
occupies two character positions. The tab \t is also a single
character, though the terminal may translate it into multiple
spaces when output.

Regardless of the nits I pick, the value returned by strlen()
can be used elsewhere in the code to manipulate all
characters in the string without violating the terminating
null character or double-counting escaped characters. If you
want to include the null character in the string’s size, you
can use the sizeof operator, but be aware that this trick
works only on statically allocated strings (otherwise, the
pointer size is returned).

In the following listing, a comparison is made between
values returned by strlen() and sizeof. A string s[] is
declared at line 6, which contains 10 characters. The
printf() statement at line 8 outputs the string’s strlen()
value. The printf() statement at line 9 outputs the string’s
sizeof value.

Listing 7.1 Source code for string_size.c

#include <stdio.h>
#include <string.h>

int main()
{

 char s[] = "0123456789"; ❶

 printf("%s is %lu characters long\n",s,strlen(s));
 printf("%s occupies %zu bytes of storage\n",s,sizeof(s));

 return(0);
}

❶ 10 characters

Here’s the output:

0123456789 is 10 characters long
0123456789 occupies 11 bytes of storage

The strlen() function returns the number of characters in
the string; sizeof returns the amount of storage the string
occupies—essentially strlen()+1, though, if the string is
smaller than its allocated buffer size, sizeof returns the
buffer size and not strlen()+1. If you make this change
to line 6 in the code:

char s[20] = "0123456789"; ❶

❶ Now 20 characters of storage

Here is the updated output:

0123456789 is 10 characters long
0123456789 occupies 20 bytes of storage

Despite the larger buffer size, the null character still sits at
element 10 (the 11th character) in the s[] array. The
remainder of the buffer is considered garbage but is still
reported as the string’s “size” by the sizeof operator.

Measuring a string also comes into play with the grand
philosophical debate over what is a null string and what is
an empty string. The difference is relevant in other
programming languages, where a string can be explicitly
defined as being either null or empty. In C, with its weak
data types and squishy strings, the difference is less
obvious. Consider the following:

char a[5] = { '\0' };
char b[5];

Of the two arrays, a[] and b[], which is the null string and
which is the empty string?

You may think that C doesn’t care about which string is
which. Obviously, array a[] is initialized and b[] is not.
The rest of the discussion is semantics, but according to
computer science, a[] is the empty string and b[] is the
null string.

In the next listing, I perform a test comparing the two
strings, empty a[] and null b[], to see whether the
compiler notices the difference between a null string or an
empty string. The strcmp() function is used, which returns
zero when both strings are identical.

Listing 7.2 Source code for empty-null.c

#include <stdio.h>
#include <string.h>

int main()
{

 char a[5] = { '\0' }; ❶

 char b[5]; ❷

 if(strcmp(a,b)==0) ❸
 puts("Strings are the same");
 else
 puts("Strings are not the same");

 printf("Length: a=%lu b=%lu\n",strlen(a),<linearrow />strlen(b)); ❹

 printf("Storage: a=%zu b=%zu\n",sizeof(a),),<linearrow /sizeof(b)); ❺

 return(0);
}

❶ The empty string

❷ The null string (uninitialized)

❸ If both strings are identical

❹ Size according to strlen()

❺ Size according to sizeof

The program’s output describes how the strings are seen
internally:

Strings are not the same
Length: a=0 b=4
Storage: a=5 b=5

Of course, there’s always a random chance that the garbage
in memory for string b[] may match up with the contents
of string a[]. Therefore, even this output can’t truly be
trusted. I mean, why does strlen(b) return the value 4?

As far as strings in C are concerned, I prefer to think of a
null string as uninitialized. An empty string is an easier
concept to understand. After all, it’s completely legitimate in
C to have a string that contains only the terminating null
character: such a string’s length is zero. It can be
manipulated by all string functions. Beyond these

curiosities, however, you can leave the debate over “empty
string” and “null string” to the grand viziers of other,
trendier programming languages.

7.1.3 Reviewing C string functions

Many C language functions understand and process strings.
The assumption is that the string is a char array that
properly terminates. This format is how functions such as
printf(), puts(), fgets(), and others deal with strings.

String functions are prototyped in the string.h header
file. Standard C library string manipulation functions are
listed in table 7.2.

Table 7.2 Common C library string functions

Function Description

strcat() Appends one string to another, sticking both together

strncat() Sticks two strings together, but limited to a certain number of

characters

strchr() Returns a pointer to the location of a specific character within a

string

strcmp() Compares two strings, returning zero for a match

strncmp() Compares two strings up to a given length

strcoll() Compares two strings using locale information

strcpy() Copies characters from one string into another or into a buffer

strncpy() Copies a given number of characters from one string to another

strlen() Returns the number of characters in a string

strpbrk() Locates the first instance of a character from one string found in

another

strrchr() Returns a pointer to character within a string, measured from

the end of the string

strspn() Returns the position of specified characters in one string found

in another

strcspn() Returns the position of specified characters in one string not

found in another

strstr() Returns the position of one string found within another

strtok() Parses a string based on separator characters (called

repeatedly)

strxfrm() Transforms one string into another based on locale information

Many string functions feature an “n” companion, such as
strcat() and strncat(). The n indicates that the function
counts characters or otherwise tries to avoid an overflow by
setting a string size value.

Though table 7.2 lists only common C library string
functions, your compiler’s library may feature more. For
example, the strcasecmp() function works like strcmp(), but

it ignores letter case when making the comparison. (See
chapter 11.) Also, the strfry() function is available
specifically with GNU C libraries. It randomly swaps
characters in a string, similar to the scramble() function
discussed in chapter 6.

Just to ensure that you’re always alarmed or confused,
some compilers may also feature a strings.h header file.
This header defines a few additional string functions, such
as strcasecmp(), with some C libraries. I don’t cover these
functions in this chapter.

7.1.4 Returning versus modifying directly

Functions that manipulate strings in C have two ways they
can make their changes. The first is to return a modified
version of the string. The second is to manipulate the
passed string directly. Choosing an approach really depends
on the function’s purpose.

For example, the strcat() function appends one string to
another. Here is the man page format:

char *strcat(char *dest, const char *src);

String src (source) is appended to the end of string dest
(destination). The function assumes enough room is
available in the dest buffer to successfully append the
string. Upon success, string dest contains both dest plus
src. The function returns a pointer to dest. The strcat()

function is an example of manipulating a passed string
directly.

In the next listing, two strings are present in the main()
function, s1[] and s2[]. It’s the job of the strappend()
function to stick both strings together, returning a pointer to
the new, longer string. The secret is that within the
strappend() function is the strcat() function, and its value
(the address of dest) is returned.

Listing 7.3 Source code for strcat.c

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

char *strappend(char *dest, char *src)
{

 return(strcat(dest,src)); ❶
}

int main()
{

 char s1[32] = "This is another "; ❷
 char s2[] = "fine mess!";
 char *s3;

 s3 = strappend(s1,s2);
 printf("%s\n",s3);

 return(0);
}

❶ The strcat() function returns pointer dest, the newly combined string.

❷ Array s1[] contains enough storage for both strings.

The program’s output shows the concatenated string:

This is another fine mess!

In this example, the function doesn’t really create a new
string. It merely returns a pointer to the first string passed,
which now contains both strings.

EXERCISE 7.1

Modify the source code for strcat.c. Remove the strcat()
function from the code, replacing it with your own code that
sticks the contents of argument src to the end of argument
dest. Do not use the strcat() function to accomplish this
task! Instead, determine the size of the resulting string and
allocate storage for it. The strappend() function returns the
address of the created string.

You can further modify the code so that string s1[] holds
only the text shown; it doesn’t need to allocate storage for
the new string. Proper allocation is instead made within the
strappend() function.

My solution to this exercise is available in the online
repository as strappend.c. Comments in the code explain
my approach. Remember, this code demonstrates how a
string function can create a new string as opposed to
modifying a string passed as an argument.

7.2 String functions galore

C has plenty of string functions, but apparently not enough
for the grand poohbahs of those other programming

languages. They disparage C as being weak on string
manipulation. Of course, any function you feel is missing
from the C library—one that happily dwells in some other,
trendier programming language—can easily be coded. All
you must do is remember to include the all-important
terminating null character, and anything string-related is
possible in C.

In this section, I present a smattering of string functions,
some of which exist in other programming languages,
others of which I felt compelled to create because of some
personal brain defect. Regardless, these functions prove
that anything you can do with a string in those Johnny-
come-lately programming languages is just as doable in C.

Oh! One point to make: the functions found in other
languages are sometimes called methods because they
pertain to object-oriented programming. Well, la-di-da. I
can call my car the Batmobile, but it’s still a Hyundai.

7.2.1 Changing case

Functions that change text case in a string are common in
other languages. In C, the ctype functions toupper() and
tolower() convert single characters, letters of the alphabet
to upper- or lowercase, respectively. These functions can
easily be applied to an entire string. All you need to do is
write a function that handles the task.

The following listing shows the source code for
strupper.c, which converts a string’s lowercase letters to

uppercase. The string is modified within the function, where
a while loop processes each character. If the character is in
the range of 'a' to 'z', its sixth bit is reset (changed to
zero), which converts it to lowercase. (This bitwise
manipulation is discussed in chapter 5.) The strupper()
function avoids using any ctype functions.

Listing 7.4 Source code for strupper.c

#include <stdio.h>

void strupper(char *s)
{

 while(*s) ❶
 {

 if(*s>='a' && *s<='z') ❷
 {

 *s &= 0xdf; ❸
 }
 s++;
 }
}

int main()
{
 char string[] = "Random STRING sample 123@#$";

 printf("Original string: %s\n",string);
 strupper(string);
 printf("Uppercase string: %s\n",string);

 return(0);
}

❶ Loops until *s references the null character (end of the string)

❷ Changes only lowercase letters

❸ Resets the sixth bit to convert to uppercase

Here is the program’s output:

Original string: Random STRING sample 123@#$
Uppercase string: RANDOM STRING SAMPLE 123@#$

The strupper() function could also convert characters to
uppercase by performing basic math. Due to the layout of
the ASCII table, the following statement also works:

*s -= 32;

Subtracting 32 from each character’s ASCII value also
converts it to lowercase.

It’s easy to modify the strupper() function to create a
function that converts characters to lowercase. Here is how
a strlower() function may look:

void strlower(char *s)
{
 while(*s)
 {

 if(*s>='A' && *s<='Z') ❶
 {

 *s += 32; ❷
 }
 s++;
 }
}

❶ Converts only uppercase letters

❷ Adds 32 to make the conversion

The complete source code showing the strlower() function is
found in this book’s online repository as strlower.c.

EXERCISE 7.2

Write a function, strcaps(), that capitalizes the first letter of
every word in a string. Process the text “This is a sample
string” or a similar string that contains several words
written in lowercase, including at least one one-letter word.
The function modifies the string directly as opposed to
generating a new string.

My solution is found in the online repository as strcaps.c.
It contains comments that explain my approach.

7.2.2 Reversing a string

The key to changing the order of characters in a string is
knowing the string’s length—where it starts and where it
ends.

For the string’s start, the string’s variable name is used,
which holds the base address. The string’s ending address
isn’t stored anywhere; the code must find the string’s
terminating null character and then use math to calculate
the string’s size. This math isn’t required in other
programming languages, where every aspect of the string is
fully known. Further, in C the string can be malformed,
which would make the process impossible.

Figure 7.1 illustrates a string lounging in memory, with both
array and pointer notation calling out some of its parts. The
terminating null character marks the end of the string,
wherever its location may be, measured as offset n from
the string’s start.

Figure 7.1 Measuring a string in memory

The easiest way to locate the end of a string is to use the
strlen() function. Add the function’s return value to the
string’s starting location in memory to find the string’s end.

For the do-it-yourself crowd, you can craft your own string-
end function or loop to locate the string’s caboose. Assume
that char pointer s references the string’s start and that int
variable len is initialized to zero. If so, this while loop
locates the string’s end, where the null character dwells:

while(*s++)
 len++;

After this loop is complete, pointer *s references the
string’s terminating null character, and the value of len is
equal to the string’s length (minus the null character). Here
is a more readable version of the loop:

while(*s != '\0')
{
 len++;
 s++;
}

The stupidest way to find the end of a string is to use the
sizeof operator. The operator isn’t dumb, but when used on
a char pointer argument, sizeof returns the number of bytes
the pointer (memory address variable) occupies, not the
size of the buffer the pointer references. For example, on
my computer, a pointer is 4 bytes wide, so no matter what
size buffer *s refers to, sizeof(s) always returns 4.

After obtaining the string’s length, the reversing process
works backgrounds through the string, copying each
character into another buffer, front to back. The result is a
new string containing the reverse character order of the
original.

The strrev() function shown in the next listing creates a new
string, reversed. First, a while loop calculates the string’s
size (argument *s). Second, storage is allocated for the
new string based on the original string’s size. I don’t need
to +1 in the malloc() statement to make room for the null
character, because variable len already references the null
character’s offset. Finally, a while loop processes string s
backward as it fills string reversed with characters.

Listing 7.5 The strrev() function

char *strrev(char *s)
{
 int len,i;
 char *reversed;

 len = 0; ❶

 while(*s) ❷
 {
 len++;

 s++;
 }

 reversed = malloc(sizeof(char) * len); ❸
 if(reversed==NULL)
 {
 fprintf(stderr,"Unable to allocate memory\n");
 exit(1);
 }

 s--; ❹

 i = 0; ❺

 while(len) ❻
 {

 *(reversed+i) = *s; ❼

 i++; ❽

 len--; ❾

 s--; ❿
 }

 *(reversed+i) = '\0'; ⓫

 return(reversed); ⓬
}

❶ Variable len contains the offset of the null character and also the string’s length.

❷ Loops until *s references the null character terminating the passed string

❸ Allocates storage for the reversed string; same length as the passed string

❹ Backs up s over the terminating null character; it now points to the last character in the

passed string

❺ Indexes into the new string, reversed

❻ Copies the number of characters in the original string

❼ Copies the characters

❽ Increments the offset for the reversed string

❾ Decrements the offset for the original string

❿ Backs up the pointer

⓫ Always cap a newly constructed string with the null character!

⓬ Don’t free the pointer here! Its data must be retained.

This function is included with the source code for
strrev.c, found in the book’s online repository. In the
main() function a sample string is output, and then the
reversed string is output for comparison. Here’s a sample
run:

Before: A string dwelling in memory
After: yromem ni gnillewd gnirts A

This code shows only one way to create a string reversal
function, though the general approach is the same for all
variations: work the original string backward to create the
new string.

7.2.3 Trimming a string

String-truncating functions are popular in other
programming languages. For example, I remember the
LEFT$, RIGHT$, and MID$ commands from my days of
programming in BASIC. These commands lack similar
functions in C, but they’re easy enough to craft. Figure 7.2
gives you an idea of what each one does.

Figure 7.2 Extracting portions of a string: left, middle, and right

Each function requires at least two arguments: a string to
slice and a character count. The middle extraction function
also requires an offset. For my approach, I decided to
return a new string containing the desired chunk, which
leaves the original string intact.

The next listing shows my concoction of a left(function,
which extracts len characters from the passed string s. As
with each of these trimming functions, storage is allocated
for a new string. The left() function is the easiest to code
because it copies the first len characters of the passed
string s into the target string buf. The address of buf is
returned.

Listing 7.6 The left() function

char *left(char *s,int len)
{

 char *buf; ❶
 int x;

 buf = malloc(sizeof(char)*len+1); ❷
 if(buf==NULL)
 {
 fprintf(stderr,"Memory allocation error\n");
 exit(1);
 }

 for(x=0;x<len;x++) ❸
 {

 if(*(s+x)=='\0') ❹
 break;

 *(buf+x) = *(s+x); ❺
 }

 *(buf+x) = '\0'; ❻

 return(buf);
}

❶ Storage for the new string

❷ Allocates storage for the new string, plus one for the null character

❸ Copies the len characters

❹ Checks for an unexpected null character and terminates the loop if found

❺ Copies characters

❻ Caps the newly created string

Figure 7.3 illustrates the guts of the left() function.

Figure 7.3 The way the left() function slices a string

Unlike the left() function, chopping off the right side of a
string requires that the program knows where the string
ends. From the preceding section, you recall that C doesn’t
track a string’s tail. Your code must hunt down that
terminating null character. For the right() function, I count
backward from the null character to lop off the right side of
the string.

My right() function is shown in the following listing. It
borrows its allocation routine from the left() function shown
in listing 7.6. After the buffer is created, the code hunts for
the end of the string, moving the pointer start to this
location. Then the value of len is subtracted from start to

reposition the pointer to the beginning of the right-end
string chunk desired. Then len number of characters are
copied into the new string.

Listing 7.7 The right() function

char *right(char *s,int len)
{
 char *buf;
 char *start;
 int x;

 buf = (char *)malloc(sizeof(char)*len+1);
 if(buf==NULL)
 {
 fprintf(stderr,"Memory allocation error\n");
 exit(1);
 }

 start = s; ❶

 while(*start!='\0') ❷
 start++;

 start -= len; ❸

 if(start < s) ❹
 exit(1);

 for(x=0;x<len;x++) ❺
 *(buf+x) = *(start+x);

 *(buf+x) = '\0'; ❻

 return(buf);
}

❶ Uses the pointer start as the offset to retain for later the address in variable s

❷ Searches for the end of the string

❸ Adjusts the pointer start to reference where the right end of the string starts

❹ Checks for underflow and exits if true

❺ Copies the rightmost portion of the string into the new buffer

❻ Caps the newly created string

The right() function’s operation is illustrated in figure 7.4.

Figure 7.4 The calculations made to extract the right side of a string

The final string-trimming function is really the only one you
need: when given the proper arguments, the mid() function
can easily substitute for the left() or right() functions. In
fact, these two functions could be macros based on mid(). I
blab more on this topic in a few paragraphs.

My mid() function has three arguments:

char *mid(char *s, int offset, int len);

Pointer s references the string to slice. Integer offset is
the character position to start extraction. And integer len is
the number of characters to extract.

The full mid() function is shown in listing 7.8. It performs a
straight character-by-character copy from the passed string

s into the new string buffer buf. The key, however, is
adding the offset value when passing the characters:

*(buf+x) = *(s+offset-1+x)

The offset value must be reduced by 1 to account for the
fact that characters in the string start at offset 0, not offset
1. If I were to write documentation for the function, I’d
need to explain that valid values for argument offset are in
the range of 1 through the string’s length. Unlike in C
coding, you don’t want to start with zero—though you
could. Again, state so in the function’s documentation.

Listing 7.8 The mid() function

char *mid(char *s, int offset, int len)
{
 char *buf;
 int x;

 buf = (char *)malloc(sizeof(char)*len+1);
 if(buf==NULL)
 {
 fprintf(stderr,"Memory allocation error\n");
 exit(1);
 }

 for(x=0;x<len;x++) ❶
 {

 *(buf+x) = *(s+offset-1+x); ❷

 if(*(buf+x)=='\0') ❸
 break;
 }

 *(buf+x) = '\0'; ❹

 return(buf);
}

❶ Copies len number of characters

❷ The offset value is decreased by 1 because the first character is offset 0, not offset 1.

❸ Catches any overflow and stops

❹ Always cap a string you’ve created yourself.

Figure 7.5 illustrates how the mid() function operates.

Figure 7.5 The operations of the mid() function

As I wrote earlier, the left() and right() functions are easily
reproduced by using specific formats for the mid() function.
If you were to write a macro for the left() function, you
could use this format:

#define left(s,n) mid(s,1,n)

With an offset of 1, this mid() function returns the leftmost
len characters of string s. (Remember, the offset value
is reduced by 1 in the mid() function.)

Crafting the right() function equivalent of mid() requires
that the string’s length be obtained in the call:

#define right(s,n) mid(s,strlen(s)-n,n)

The second argument is the string’s length (obtained by the
strlen() function), minus the number of characters desired.
It bothers me to call the strlen() function in a macro, but
my point is more to show that the true power function for
string slicing is the mid() function.

You can find all these string-trimming functions—left(),
right(), and mid()—in the source code file trimming.c,
found in this book’s online repository.

7.2.4 Splitting a string

I wrote my string-splitting function out of spite. Another
programmer, a disciple of one of those fancy new
languages, scoffed, “You can’t even split a string in C with
fewer than 20 lines of code.”

Challenge accepted.

Though I can easily code a string-splitting function in C with
fewer than 20 lines of code, one point I must concede is
that such a function requires at least four arguments:

int strsplit(char *org,int offset,char **s1,char **s2)

Pointer org references the string to split. Integer offset is
the location of the split. And the last two pointers, s1 and
s2, contain the two sides of the split. These pointers are
passed by reference, which allows the function to access
and modify their contents.

The next listing shows my strsplit() function, with its cozy
15 lines of code—and no obfuscation. I used white space
and indents as I normally do. The size of the original string
is obtained and used to allocate storage for s1 and s2.
Then the strncpy() function copies the separate portions of
the original string into the separate strings. The function
returns 1 upon success, and 0 when things foul up.

Listing 7.9 The strsplit() function

int strsplit(char *org,int offset,char **s1,char **s2)
{
 int len;

 len = strlen(org); ❶

 if(offset > len) ❷
 return(0);

 *s1 = malloc(sizeof(char) * offset+1); ❸

 *s2 = malloc(sizeof(char) * len-offset+1); ❹

 if(s1==NULL || s2==NULL) ❺
 return(0);

 strncpy(*s1,org,offset); ❻

 strncpy(*s2,org+offset,len-offset); ❻
 return(1);
}

❶ Obtains the original string’s length

❷ If the offset argument is out of range, return zero—error.

❸ Allocates storage for split string 1, argument s1 dereferenced

❹ Allocates storage for split string 2, calculating the proper size

❺ Returns an error if either allocation fails

❻ Copies the proper number of characters into the new strings

The strsplit() function you see in listing 7.9 is my first
version, where my goal was to see how few lines of code I
could use. It calls C library string functions to perform some
of the basic operations, which means this version of the

strsplit() function relies upon the string.h header file. I
wrote another version that avoids using the string library
functions, though its code is obviously much longer.

The strsplit() function shown in listing 7.9 is found in the
online repository in the strsplit.c source code file.

7.2.5 Inserting one string into another

When I originally thought of writing a string insertion
function, I figured I’d use two C library string functions to
accomplish the task: strcpy() and strcat(). These functions
can build the string one step at a time: the strcpy() function
copies one string to another, duplicating a string in another
array or chunk of memory. The strcat() function sticks one
string onto the end of another, creating a larger string. The
inserted string is pieced together: original string, plus
insert, plus the rest of the original string.

The function would have this declaration:

int strinsert(char *org, char *ins, int offset);

Pointer org is the original string, which must be large
enough to accommodate the inserted text. Pointer ins is
the string to insert; integer offset is the location (starting
with 1) at which string ins is inserted into string org.

My strinsert() function returns 1 upon success, 0 on error.

It didn’t work.

The problem with using strcpy() and strcat() is that I must
split the original string, save the remainder, and then build
final string. This step requires a temporary buffer for the
remainder of string org at position offset, as illustrated
in figure 7.6. Then string ins is concatenated to the new
end of string org, then the original end of string org is
concatenated to the result. Messy.

Figure 7.6 The process of using string library functions makes inserting

a string overly complex.

Further, as shown in figure 7.6, the hope is that the user
has allocated enough storage for the original string org to
accommodate the inserted text. To me, this hope is too

risky, so I changed my approach. Here is the function’s
updated declaration:

char *strinsert(char *org, char *ins, int offset);

The function’s return value is a newly created string, which
avoids the necessity that string org be large enough to also
accommodate inserting string ins. Returning the string,
that is, creating it within the function, also avoids having to
temporarily store the remainder of string org for
concatenation later.

In this new approach, I build the new string character by
character, inserting string ins at offset characters as the
new string is built. Figure 7.7 illustrates how the improved
version of the function operates.

Figure 7.7 The improved technique for inserting one string into another

Rather than use the strcat() and strcpy() functions, my
improved version of the strinsert() function copies
characters sequentially from string org into a newly created
buffer, new. Once the character count is equal to offset,
characters are copied from string ins into the newly
created buffer. After that, the count continues from string
org.

You find the full strinsert() function in the following listing.
It builds the string new character by character from
arguments org and ins. The C library’s strlen() function is
used; otherwise, the string is built using statements within
the function.

Listing 7.10 The strinsert() function

char *strinsert(char *org, char *ins, int offset)
{
 char *new;
 int size,index,append;

 size = strlen(org)+strlen(ins); ❶

 if(offset<0) ❷
 return(NULL);

 new = malloc(sizeof(char) * size+1); ❸
 if(new==NULL)
 {
 fprintf(stderr,"Memory allocation error\n");
 exit(1);
 }

 offset -= 1; ❹

 index = 0; ❺

 append = 0; ❻

 while(*org) ❼
 {

 if(index==offset) ❽
 {

 while(*ins) ❾
 {
 *(new+index) = *ins;
 index++;
 ins++;
 }

 append = 1; ❿
 }

 *(new+index) = *org; ⓫
 index++;
 org++;
 }

 if(!append) ⓬
 {
 while(*ins)
 {
 *(new+index) = *ins;
 index++;
 ins++;
 }
 }

 *(new+index) = '\0'; ⓭

 return(new);
}

❶ Obtains the size of the new string

❷ Returns an empty string if the offset is a silly value

❸ Allocates storage for the new string

❹ Reduces the offset value to account for strings starting at 0, not 1

❺ Indexes to track progress through new string

❻ Status variable to track whether ins string has been inserted

❼ Loops through the original string

❽ Immediately checks for the offset value to account for offset = 0

❾ Inserts ins string, adding it to string new

❿ Marks that the string has been inserted

⓫ Continues building the new string from the original string

⓬ Confirms that a string was inserted; if not, string ins is appended

⓭ Always cap a string you create yourself!

In the function, I tried to handle a condition when the
offset argument is larger than the length of string org. I
couldn’t quite get it to work, so I decided to use the out-of-
range value as a feature: if the value of offset is longer
than string org, string ins is appended to string org
regardless of the offset value.

You can find the strinsert() function inside the source code
file strinsert.c in this book’s online repository. Here is
the program’s output, where the string “fine” (plus a space)
is inserted into the string “Well, this is another mess!” at
offset 23:

Before: Well, this is another mess!
After: Well, this is another fine mess!

7.2.6 Counting words in a string

To solve the puzzle of counting words in a string, you must
write code that recognizes when a word starts. You’ve
already written such code if you completed exercise 7.2,
which capitalizes the first character of words in a string. The
strcaps() function can be modified to count words rather
than convert characters to uppercase.

The next listing shows an update to my solution for exercise
7.2 (do you regret reading this chapter front-to-back?),
where the strwords() function consumes a string’s
characters in sequence, one after the other. The variable
inword determines whether the current character is inside
a word. Each time a new word starts, variable count is
incremented.

Listing 7.11 The strwords() function inside source code strwords.c

#include <stdio.h>
#include <ctype.h>

int strwords(char *s)
{

 enum { FALSE, TRUE }; ❶

 int inword = FALSE; ❷
 int count;

 count = 0; ❸

 while(*s) ❹
 {

 if(isalpha(*s)) ❺
 {

 if(!inword) ❻
 {

 count++; ❼

 inword = TRUE; ❽
 }
 }
 else
 {

 inword = FALSE; ❾
 }
 s++;
 }

 return(count);
}

int main()
{
 char string[] = "This is a sample string";

 printf("The string '%s' contains %d words\n",
 string,
 strwords(string)
);

 return(0);
}

❶ Creates the constants FALSE=0 and TRUE=1

❷ Starts out assuming the code isn’t reading inside of a word

❸ Word count initialized

❹ Loops through string s

❺ Is the current letter alphabetic?

❻ Confirms that a word isn’t being processed

❼ Inside the word, increments the count

❽ Resets the inword variable

❾ For nonalpha characters, inword is FALSE

Here is a sample run of the strwords.c program:

The string 'This is a sample string' contains 5 words

If you change the word is to isn’t in the string, here is the
modified output:

The string 'This isn't a sample string' contains 6 words

Hmmm.

EXERCISE 7.3

Modify the strwords() function shown in listing 7.11 so that
it accounts for contractions. This task has a simple solution,
one that’s presented in the first C language programming
book, The C Programming Language, by Brian Kernighan
and Dennis Ritchie (Pearson, 1988). Without cheating, see if
you can accomplish the same task.

My solution is titled strwords2.c, and it’s available in this
book’s online repository.

7.2.7 Converting tabs to spaces

The terminal you use in Linux is smart enough to output tab
characters to the next virtual tab stop on the display. These
tab stops are set at 8 characters by default. Some shells,

such as bash and zsh, feature the tabs command, which can
set the tab stops to a different character interval: for
example, tabs 4 sets a terminal tab stop that is 4 characters
wide.

The following printf() statement outputs a string with two
tab characters:

printf("Hello\tHi\tHowdy\n");

Here is the output:

Hello Hi Howdy

The tab character didn’t expand to a constant number of
characters. Instead, it’s interpreted by the shell and
expanded to the next virtual tab stop at 8-character
intervals across the display. This effect ensures that
columns line up perfectly as you use tabs to line up text or
create tables.

Obviously, you don’t need to convert tabs into spaces for
output on the terminal. But one function you can write is
one that sets variable-width tab stops in a program’s
output. The width for these tab stops is created by
outputting spaces; this book doesn’t go into terminal
hardware programming.

To set a tab stop, you must know where text output is going
across the screen—the current column value. This value is
compared with the tab stop width desired, using the
following equation:

spaces = tab - (column % tab)

Here is how this statement works out:

The (column % tab) expression returns the number of
spaces since the last tab stop interval (tab) based on the
cursor’s current column offset (column). To obtain the
number of spaces until the next tab stop, this value is
subtracted from the tab stop width. The result is the
number of spaces required to line up the next character
output with a tab stop.

The tab calculation equation exists as a statement in the
strtabs() function, shown in the next listing. The function
outputs a string, carefully checking each character for the
tab, \t. When encountered, the next tab stop offset is
calculated, and the given number of spaces are output.

Listing 7.12 The strtabs() function inside source code file strtabs.c

#include <stdio.h>

void strtabs(const char *s, int tab)
{
 int column,x,spaces;

 column = 0; ❶

 while(*s) ❷
 {

 if(*s == '\t') ❸
 {

 spaces = tab - (column % tab); ❹

 for(x=0; x<spaces; x++) ❺
 putchar(' ');

 column += spaces; ❻
 }

 else ❼
 {
 putchar(*s);

 if(*s=='\n') ❽
 column = 0;
 else
 column++;
 }
 s++;
 }
}

/* calculate and display a tab */
int main()
{
 const char *text[3] = {
 "Hello\tHi\tHowdy\n",
 "\tLa\tLa\n",
 "Constantinople\tConstantinople\n"
 };
 int x,y;

 for(y=4;y<32;y*=2) ❾
 {
 printf("Tab width: %d\n",y);
 for(x=0;x<3;x++)
 {
 strtabs(text[x],y);
 }
 }

 return(0);
}

❶ The column variable tracks the current column position.

❷ Loops through the string

❸ Catches the tab character

❹ Calculates the number of spaces to output to line up at the next tab stop

❺ Outputs the required spaces

❻ Updates the column offset

❼ Handles other characters here

❽ If a newline is output, resets the column value

❾ Nested loop to output the three sample strings at three different tab stops: 4, 8, and 16

spaces

The program’s output generates three strings, with different
tab patterns using three different tab stop settings. Here’s
the output:

Tab width: 4
Hello Hi Howdy
 La La
Constantinople Constantinople
Tab width: 8
Hello Hi Howdy
 La La
Constantinople Constantinople
Tab width: 16
Hello Hi Howdy
 La La
Constantinople Constantinople

When the terminal window encounters a tab, it doesn’t
convert the tab into multiple spaces like the strtabs.c
program does. For the terminal window, the cursor itself
moves the required number of character positions across
the screen; spaces aren’t output. To prove so, take the
standard output of some program that generates tabs and

look at the raw data. You see tab characters (ASCII 9)
instead of a series of spaces.

7.3 A string library

One of the best ways to put all string-manipulation
functions to work, or to deal with any targeted collection of
functions, is to create your own custom library. It’s a way to
share the functions with others or have them ready for
yourself in a practical way.

You know about other libraries and have probably used
them, such as the math library. Creating these tools isn’t
that difficult, nor is knowing how to create them a secret: if
you know how to compile code, you can create a library.

All C libraries are created by someone—some clever coder
who cobbles together functions and other elements required
to let you share in their genius. Even the C standard library
is written and maintained by C coders, the high lords of the
programming realm.

Using your string library is as easy as using another library;
your string library is linked into the object code file at build
time. The functions are prototyped and supported by a
custom header file. Everything works for your library just as
it does for other libraries.

For the string library, I’ll include many of the functions
demonstrated in this chapter. If you have additional,
favorite string functions, feel free to add them as well.

Directions throughout this section explain the details and
offer tips for creating your own custom library.

7.3.1 Writing the library source and header file

Creating a library starts with a source code editor. Your goal
is to create two files at minimum:

A source code file
A header file containing the functions’ prototypes

The source code is one or more files (depending on how you
work) containing all the functions for the library—just the
functions. You don’t need a main() function, because you’re
building a library, not a program. This file is compiled just
like any other source code file, but it’s not linked. You need
only the object code file, .o, to create the library.

The library also requires a header file, which contains the
function prototypes’s defined constants, necessary includes,
and other goodies that assist the functions. For example, if
a function uses a structure, it must be declared in the
source code file as well as in the header file. Programmers
who use your library need the structure definition to make
the function work. The header file is where you put these
things, and it’s where they’re referenced when
programmers use your library.

In listing 7.13, you see the first part of the mystring.c
source code file, which contains many of the string
functions demonstrated in this chapter. The file has

descriptive comments, which can be expanded to show
version history, offer tips, and provide examples. The
#include directives in the source code file are required for
the functions, just as they would be in any source code file.
Further, see how I’ve feebly attempted to document each
function, showing the arguments and return value? Yes, this
information can be expanded upon; documentation is good.

Listing 7.13 The first part of the mystring.c library source code file

/* mystring library */ ❶

/* 10 September 2021 */ ❶

/* Dan Gookin, dan@gookin.com */ ❶

#include <stdio.h> ❷

#include <stdlib.h> ❷

#include <string.h> ❷

#include <ctype.h> ❷

/* Return the left portion of a string ❸

 s = string ❸

 len = length to cut from the left ❸

 return value: new string ❸
 */

char *left(char *s,int len) ❹
{

❶ Comments introducing the library file

❷ Headers required for the functions in this file

❸ Comments introducing and describing each function

❹ The function itself (continues)

The order of the functions inside the source code file
doesn’t matter—unless one function references another. In
such a situation, ensure that the referenced function
appears before (above) the function it’s referenced in.

The companion header file for your library isn’t listed in the
library’s source code file (refer to listing 7.13). The header
file is necessary to provide support for programmers who
use your library; only if items in the header file are
referenced in the code (defined constants, for example) do
you need to include the library’s header file in the source
code file. Key to the header file are the function prototypes,
structures, global/external variable definitions, macros, and
defined constants.

As with the library’s source code file, I recommend
commenting the header file to document its parts. Be
helpful to your programmer pals. Further, I add version
number defined constants to my header files, as shown
here.

Listing 7.14 The mystring.h header file to support the mystring library

/* mystring library header file */ ❶

/* 10 September 2021 */ ❶

/* Dan Gookin, dan@gookin.com */ ❶

#define mystring_version "1.0" ❷

#define mystring_version_major 1 ❷

#define mystring_version_minor 0 ❷

char *left(char *s,int len); ❸

char *mid(char *s, int offset, int len); ❸

char *right(char *s,int len); ❸

void strcaps(char *s); ❸

char *strinsert(char *org, char *ins, int offset); ❸

void strlower(char *s); ❸

char *strrev(char *s); ❸

int strsplit(char *org,int offset,char **s1,char **s2); ❸

void strtabs(const char *s, int tab); ❸

void strupper(char *s); ❸

int strwords(char *s); ❸

❶ Details about your library header file in the comments

❷ Version number defined constants

❸ Function prototypes

Both files, the source code and header file, are necessary to
use the library.

7.3.2 Creating a library

Libraries are created from object code files. The ar (archive)
utility is what transforms the object code file into a library.
Therefore, the first step to creating a library is to compile—
but not link—your library’s source code file. Once you have
the compiled object code, you use the ar utility to create
the library.

For this example, I’m using the mystring.c source code
file, which is available from this book’s online code
repository. To compile the source code into object code, the
-c switch is specified. This switch is available to all C
compilers. Here is the command format for clang:

clang -Wall -c mystring.c

The -c switch directs clang to “compile only.” The source
code file is compiled into object code, mystring.o, but it’s
not linked to create a program. This step is repeated for all

source code files, though you can specify the lot in a single
command:

clang -Wall -c first.c second.c third.c

For this command, three object code files are created:
first.o, second.o, and third.o.

The next step is to use the archive utility ar to build the
library. This command is followed by three arguments:
command switches, the name of the library file, and finally
the object code files required to build the library. For
example:

ar -rcs libmystring.a mystring.o

Here are what the switches do:

-c—Creates the archive

-s—Indexes the archive

-r—Inserts file(s) into the archive

You can specify them as -rcs or -r -c -s—either way.

The name of the library file will be libmystring.a. The ar
utility uses the object code file mystring.o to create the
library. If multiple object code files were required, specify
them after mystring.o.

Upon success, the ar utility creates the library named
libmystring.a. This naming format follows the convention

used in Linux: libname.a. The library starts with lib, and
then name, which is the library name. The filename
extension is dot-a.

The .a extension, as well as the process outlined in this
section for creating a library, is designed for static library,
as opposed to a dynamic library. The static model works
best for this type of library, which is used only by
command-line programs and doesn’t require the capabilities
of a dynamic library. I do not cover dynamic libraries in this
book.

7.3.3 Using the string library

To use a library other than the standard C library, its name
must be specified at build time. The -l (little L) switch is
immediately followed by the library name. The name is the
only part of the library filename used, not the first three
letters (lib) or the .a extension.

If you’ve copied the library into the /usr/local/lib
folder, the linker searches for it there. Otherwise, the -L
(big L) switch directs the linker to look in a specific directory
for library files. For a library you create in the same folder
as your program, such as when working the examples in
this book, specify the -L. (dash-big L-period) switch to
direct the linker to look in the current directory. For
example:

clang -Wall -L. libsample.c -lmystring

When clang builds the source code from libsample.c into
a program, it directs the linker to look in the current
directory (-L.) for the library file libmystring.h (-
lmystring). The format for this command is important;
the -l switch must be specified last or else you see linker
errors. (Some compilers may be smart enough to discover
the library switch as any command-line argument, though
my experience leads me to recommend putting the -l
switch last.)

The next listing shows the source code found in
libsample.c, available in this book’s online repository.
The strcaps() function at line 8 is part of the mystring
library. Its prototype is found in the mystring.h header
file (also included in the repository), though it’s the library
that contains the function’s code. Line 2 shows the header
file in double quotes, which directs the compiler to locate it
in the current directory.

Listing 7.15 Source code for libsample.c

#include <stdio.h>

#include "mystring.h" ❶

int main()
{
 char string[] = "the great american novel";

 strcaps(string); ❷
 printf("%s\n",string);

 return(0);
}

❶ Looks in the current directory for this header file, which contains the prototype for the

strcaps() function

❷ This function is found in the libmystring.a library, linked in at build time.

Here is the program’s output when built and linked using
the command shown earlier:

The Great American Novel

Just as you can place a copy of your personal library in the
/usr/local/lib folder, you can place a copy of the
library’s header file into the /usr/local/include folder.
This step avoids having to use the double quotes to set the
header file’s location; as with /usr/local/lib, the
compiler scans the /usr/local/include folder for
header files.

7.4 A kinda OOP approach

C is a procedural programming language. Inelegantly put,
this description means that C code runs from top to bottom,
with one thing happening after another. Older programming
languages like C are also procedural. The list includes
BASIC, Fortran, COBOL, and other relics. But don’t let the
antiquity fool you! COBOL programmers made bank during
the Y2K crisis.

Newer programming languages are object-oriented. They
approach the programming task differently, something you
can read about in wonderful books about these popular and

trendy digital dialects. Without getting too far into the
weeds, and keeping this discussion vague to avoid the
nitpickers, object-oriented programming (OOP) involves
methods instead of functions. Methods work like functions,
though they’re often a part of the data type they
manipulate.

For example, if you want to obtain the length of a string in
the Java programming language, you use this construction:

Len = Str.length()

The string variable is named Str. The dot operator
accesses the length() method, which is attached to all string
objects. (Get it?) The result returned is the number of
characters in string Str. The equivalent C language
statement is:

len = strlen(str);

The dot operator is also used in C, specifically in a
structure. And one of the members of a string can be . . . a
function. Surprise.

7.4.1 Adding a function to a structure

A structure contains members of specific data types: int,
float, char, and so on. As it turns out, a function is also a
data type, and it can serve as a member of a structure.

For comparison, if you’ve been around the C language a
while, you know that many functions can accept another
function as an argument; the qsort() function uses another
function (its name as an address) as one of its arguments.
As with functions as arguments, specifying a function as a
structure member involves using a specific format:

type (*name)(arguments)

The type is a data type, the value returned from the
function or void for nothing returned.

The name is the function’s name, which is secretly a pointer.
In this format, the function’s name isn’t followed by
parentheses. Instead, the arguments item lists any
arguments passed to the function.

To form a clear picture, here is a structure definition that
has a function as one of its members:

struct str {
 char *string;
 unsigned long (*length)(const char *);
};

The str structure’s function member is referenced as the
length. It takes a const char pointer—a string—as its
argument. And it returns an unsigned long value. This
declaration merely creates a function as a member of the
str structure, which also contains a string member. To
make the function member work, it must be assigned to a
specific function. In this case, the function I have in mind is

strlen(), which takes a const char pointer as an argument
and returns an unsigned long value.

Creating a structure merely defines its members. To use the
structure, a variable of the structure type is created. Here,
structure str variable str1 is created:

struct str str1;

And its members must be assigned values. Here is how the
length member is assigned:

str1.length = &strlen;

The length member’s function is strlen(). It’s specified
without the parentheses, prefixed by the ampersand to
obtain its address. Once assigned, the function member can
be called like any function. For example:

len = str1.length(str1.string);

Member str1.length is a function (secretly strlen()). It
operates on the string member of the same structure,
str1.string. The value returned, the length of the string,
is stored in variable len.

The following listing demonstrates all these crazy steps in
the source code for struct_funct.c. This file is available
in this book’s online repository.

Listing 7.16 Source code for struct_funct.c

#include <stdio.h>

#include <string.h> ❶

int main()
{
 struct str {
 char *string;

 unsigned long (*length)(const char *); ❷
 };

 struct str str1; ❸
 char s[] = "Heresy";

 str1.string = s; ❹

 str1.length = &strlen; ❺

 printf("The string '%s' is %lu characters long\n",
 str1.string,

 str1.length(str1.string) ❻
);

 return(0);
}

❶ Must include the string.h header for the definition of the strlen() function

❷ The function member of structure str

❸ Variable str1 is created of the str structure type.

❹ The string member is assigned.

❺ The function is assigned, no parentheses, and prefixed by the address-of operator.

❻ The function is called in the printf() statement.

Here is the program’s output:

The string 'Heresy' is 6 characters long

I confess that the expression
str1.length(str1.string) doesn’t magically
transform C into an object-oriented programming language.
Yet for those intrepid coders who strive to make C more
OOP-like, this is the approach they take. They may even

cobble together macros to make the contraption look
cleaner, such as str.length(), which is what I’d be
pleased with. Still, C wasn’t created to offer such
constructions. Most coders who want to use OOP drift to
languages such as C++, C#, and Python.

7.4.2 Creating a string “object”

I’m risking certain heresy charges and banishment from the
C programming world, but it’s possible to further expand
upon the idea of making C more OOP-like. Consider that
you could create a string structure “object.” The problem
with C is that the implementation must be done through
functions.

For example, you could write a function to create the
pseudo string object. The function would require a string
structure to be passed. Such a structure might look like
this:

struct string {
 char *value;
 int length;
};

This example is brief. You could add other string descriptors
as structure members and perhaps a smattering of
functions as well. But, for a pseudo string object
demonstration, this construction is sufficient.

To create the phony string object, a string_create() function
is needed. This function is passed a pointer to a string

structure along with the string’s contents (text):

int string_create(struct string *s, char *v)

The pointer is necessary to allow the function to modify the
structure directly. Without the pointer, any changes made to
the passed structure within the function are discarded. The
string passed, v, is eventually incorporated into the
structure along with other informative goodies.

The next listing illustrates the string_create() function. It
returns TRUE or FALSE values depending on whether the
object is successfully created: the string’s length is obtained
and stored in the structure’s length member. This value is
used to allocate storage for the string. I feel that allocating
storage specifically for the string is better than duplicating
the passed string’s pointer, which could change in the
future.

Listing 7.17 The string_create() function

int string_create(struct string *s, char *v)
{

 if(s==NULL) ❶
 return(FALSE);

 s->length = strlen(v); ❷

 s->value = malloc(sizeof(char) * s->length +1); ❸
 if(s->value==NULL)
 return(FALSE);

 strcpy(s->value,v); ❹

 return(TRUE); ❺
}

❶ Confirms that a string is available; if not, returns FALSE

❷ Assigns the string’s length

❸ Allocates storage for the string

❹ Copies the original string to newly allocated storage

❺ Returns TRUE upon success

Just as an object is created, a companion string_destroy()
function must exist. This function removes the object, which
means deallocating the string’s storage and zeroing out any
other structure members.

The next listing shows the string_destroy() function, called
with the sole argument as the string structure to clear.
The function does three things: frees the allocated memory,
assigns the value pointer to NULL (which confirms that the
memory is deallocated), and sets the string’s length to zero.
This function doesn’t obliterate the structure variable, unlike
OOP languages that may also remove the variable that’s
created.

Listing 7.18 The string_destroy() function

void string_destroy(struct string *s)
{

 free(s->value); ❶

 s->value = NULL; ❷

 s->length = 0; ❸
}

❶ Free string storage memory

❷ Assigns the pointer to NULL, which can be used later to test for a valid string structure

❸ Resets the string length to zero

Of course, after destroying a string structure variable, it can
be reused or reassigned. The point is to have both a create
function and a destroy function for the “object,” which
mimics how some object-oriented programming languages
work with objects.

The source code file string_object.c, available on this
book’s online repository, showcases both functions. In the
code, you see that the string structure is declared
externally, which allows all functions to access its definition.

It’s possible to expand upon the string structure, adding
more members that describe the string—including function
members. I leave this topic to you for further exploration,
though keep in mind that object-oriented programming
languages are available for you to learn and play. Forcing C
into this mold is a consideration, but I would recommend
focusing on the language’s strengths as opposed to
pretending it’s something else.

8 Unicode and wide characters

In the beginning was Morse code, a simple method of translating
electrical pulses—long and short—into a string of characters and
readable text. Morse wasn’t the first electronic encoding method,
but it’s perhaps the best known. Developed in 1840, it’s named
after Samuel Morse, who helped invent the telegraph and who also
bears an uncanny resemblance to Lost in Space’s Dr. Smith.

Some 30 years after Morse code came the Baudot code. Also used
in telegraph communications, Baudot (baw-DOH) represents letters
of the alphabet using a 5-bit sequence. This code was later
modified into Murray code for use on teletype machines with
keyboards, as well as early computers. Then came IBM’s Binary
Coded Decimal (BCD) for use on their mainframe computers.
Eventually, the ASCII encoding standard ruled the computer roost
until Unicode solved everyone’s text encoding problems in the late
20th century.

This chapter’s topic is character encoding, the art of taking an
alphabet soup of characters and assigning them a code value for
digital representation in a computer. The culmination of this effort
is Unicode, which slaps a value to almost every imaginable written
scribble in the history of mankind. To help explore Unicode in the C
language, in this chapter you will:

Review various computer encoding systems

Study ASCII text, code pages, and Unicode

Set the locale details for your programs

Understand different character types, such as UTF-8

Work with wide characters and strings

Perform wide character file I/O

I really don’t see any new text-encoding format taking over from
Unicode. It’s a solid system, with new characters assigned every
year. Its only limitation seems to be its spotty implementation in
various typefaces. Therefore, although you can program Unicode in
a Linux terminal window, text output may not appear accurately. To
best resolve this issue, ensure that your terminal program window
lets you change fonts so that you can witness the interesting,
weird, and impressive text Unicode can produce.

8.1 Text representation in computers

Computers understand numbers, bits organized into bytes dwelling
in memory, manipulated by the processor, and stored long-term on
media. The system really doesn’t care about text, and it’s totally
ignorant of spelling. Still, to communicate with humans, many of
these byte values correspond to printed characters. It’s the
consistency of this character encoding that allows computers to
communicate with humans and exchange information, despite their
innate reluctance to do so.

8.1.1 Reviewing early text formats

The only time you hear about Morse code these days is in the
movies. Something important must happen, and communications
takes place only via tapping on a pipe or something equally
desperate and silly. One of the characters responds with the cliché
that their knowledge of Morse code is “rusty,” but the message is
decoded, the audience impressed, and the day saved.

Morse code is composed of a series of dashes and dots, long or
short pulses, to encode letters and numbers. No distinction is
necessary between upper- and lowercase. Some common codes are

known among nerds, such as S-O-S, though I can’t readily
remember which triplex series of dots and dashes belongs to the S
or O. I suppose I can look at table 8.1 to determine which is which.

Table 8.1 Morse code

Character Code Character Code Character Code

A .- M -- Y -.--

B -... N -. Z --..

C -.-. O --- 1 .-----

D -.. P .--. 2 ..---

E . Q --.- 3 ...--

F ..-. R .-. 4-

G --. S ... 5

H T - 6 -....

I .. U ..- 7 --...

J .--- V ...- 8 ---..

K -.- W .-- 9 ----.

L .-.. X -..- 0 -----

I’ll avoid getting into the weeds with technical details about the
length of a dash or dot and spaces and such. Though, one nerdy
point I can bring up is that the encoding is designed so that
frequently used letters have fewer units, such as E, T, I, A, N, and
so on.

The next listing shows the toMorse() function, which outputs a
Morse code character string based on an input character. The
character strings are stored in two const char arrays, matching the
sequences A to Z for morse_alpha[] and 0 to 9 for
morse_digit[]. An if-else structure uses ctype functions to pull
out alpha and numeric characters; all other characters are ignored.

Listing 8.1 The toMorse() function

void toMorse(char c)
{

 const char *morse_alpha[] = { ❶
 ".-", "-...", "-.-.", "-..", ".", "..-.",
 "--.", "....", "..", ".---", "-.-", ".-..",
 "--", "-.", "---", ".--.", "--.-", ".-.",
 "...", "-", "..-", "...-", ".--", "-..-",
 "-.--", "--.."
 };

 const char *morse_digit[] = { ❶
 "-----", ".----", "..---", "...--", "....-",
 ".....", "-....", "--...", "---..", "----."
 };

 if(isalpha(c)) ❷
 {

 c = toupper(c); ❸

 printf("%s ",morse_alpha[c-'A']); ❹
 }

 else if(isdigit(c)) ❺
 {

 printf("%s ",morse_digit[c-'0']); ❻
 }

 else if(c==' ' || c=='\n') ❼
 {
 putchar('\n');
 }

 else ❽
 return;
}

❶ Arrays declared as const char to keep the code from otherwise messing with them; this type of

construction dislikes being manipulated.

❷ Pulls out alphabetic characters

❸ Converts to uppercase; Morse is case-insensitive.

❹ Subtracts the character from 'A' to obtain the proper array element offset

❺ Checks for digits 0 through 9

❻ Subtracts the digit from '0' to obtain the proper array element offset

❼ For spaces and newlines, outputs a newline

❽ Ignores non-Morse characters; no output is generated.

The toMorse() function is easily set into a filter, which translates
text input into Morse code strings for output. Such a filter is found
in the source code file morse_code_ filter.c, available in this
book’s online repository.

Another text encoding scheme is Baudot. This term may be strange
to you—unless you’re an old timer who once referred to your dial-
up modem’s speed in “baud.” A 300-baud modem crept along at
300 characters per second. Because baud isn’t exactly a
representation of characters per second, faster modems (and
today’s broadband) are measured in bits per second (BPS) and not
baud.

Anyway.

The Baudot scheme encodes text in 5-bit chunks. This code was
adapted by engineer and inventor Donald Murray into Murray code
for use on teletype machines. These machines featured a QWERTY
keyboard and were often used as input devices for early computer
systems. Specifically, Murray developed paper tape to store and
read keystrokes. Holes punched in the paper tape represented
characters, as illustrated in figure 8.1.

Figure 8.1 Paper tape with holes punched representing Baudot-Murray code

The International Telegraph Alphabet No. 2 (ITA2) standard for
Baudot-Murray code was introduced in 1928. In the United States,
the standard is named US-TTY (TTY for teletype). Because it’s 5
bits wide, not enough values are available to handle the full
character set. Therefore, the code requires a shift character to
switch between the alpha and symbol sets.

Table 8.2 lists the Baudot-Murray hexadecimal codes for
alphanumeric characters, the letter set. The code 0x1B switches to
the figure set characters, shown in table 8.3. Code 0x1B or code
0x1F switches back.

Table 8.2 Baudot-Murray codes for ITA2 and US-TTY, letter set

Code Character Code Character Code Character Code Character

0x00 \0 0x08 \r 0x10 T 0x18 O

0x01 E 0x09 D 0x11 Z 0x19 B

0x02 \n 0x0A R 0x12 L 0x1A G

0x03 A 0x0B J 0x13 W 0x1B shift

0x04 space 0x0C N 0x14 H 0x1C M

0x05 S 0x0D F 0x15 Y 0x1D X

0x06 I 0x0E C 0x16 P 0x1E V

0x07 U 0x0F K 0x17 Q 0x1F del

Table 8.3 Baudot-Murray codes for ITA2 and US-TTY, figure set

Code Character Code Character Code Character Code Character

0x00 \0 0x08 /r 0x10 5 0x18 9

0x01 3 0x09 $ 0x11 " 0x19 ?

0x02 \n 0x0A 4 0x12) 0x1A &

0x03 - 0x0B ' 0x13 2 0x1B shift

0x04 space 0x0C , 0x14 # 0x1C .

0x05 \a 0x0D ! 0x15 6 0x1D /

0x06 8 0x0E : 0x16 0 0x1E ;

0x07 7 0x0F (0x17 1 0x1F letters

Don’t try to make sense of the character mapping used in Baudot-
Murray. If you’re pleased with the way ASCII codes are organized
(refer to chapter 5), the text encoding shown in tables 8.2 and 8.3
is particularly baffling. Keep in mind that these codes were created
for consistency with earlier systems. Perhaps some sense is to be
found in the encoding. Who knows?

I was all excited to write a program that translates between ASCII
and Baudot-Murray encoding. The problem with such translation is
that the resulting code is pretty much brute force, a character-to-
character swap. Mix in the shifting character sets, and such a
programming chore becomes a nightmare with no practical
purpose.

8.1.2 Evolving into ASCII text and code pages

Beyond the Baudot-Murray code used on teletype machines, IBM
invented a text-encoding standard for its mainframes: Extended
Binary Coded Decimal Interchange Code (EBCDIC). This scheme
was one of the first 8-bit character encoding standards, though it
was used primarily with IBM mainframes.

For input, IBM systems used punch cards. Therefore, the EBCDIC
encoding scheme was designed to allocate codes for characters
with the goal of keeping the punched holes in the card from
collecting in clusters. This approach was necessary to prevent the
cards from tearing or the holes from connecting with each other. To
meet this goal, the EBCDIC codes feature gaps in their sequences;
many EBCDIC character codes are blank.

As computing moved away from punch cards, throngs of
programmers rejoiced. A new encoding standard—ASCII—was
developed by the American Standards Association in 1963. A 7-bit
standard, ASCII added logic and—more important—compassion to
text encoding.

The 7-bit ASCII code is still in use today, though bytes today are
consistently composed of 8 bits. This extra bit means that modern
computers can encode 256 characters for a byte of data, only half
of which (codes 0 through 127) are standardized by ASCII.

You can read more about having fun with ASCII in chapter 4. My
focus in this section is about character codes 128 through 255, the
so-called extended ASCII character set.

Extended ASCII was never an official standard, nor was it
consistent among all 8-bit computers. These extra 128 characters
in a byte were mapped to non-ASCII characters on various
microcomputers in the late 1970s and early 1980s. Having the
codes available meant that more symbols could be generated on a
typical computer, including common characters such as ×, ÷, ±,
Greek letters, fractions, accented characters, diglyphs, and so on.

Figure 8.2 lists the extended ASCII character set available on the
original IBM PC series of computers back in the early 1980s.
Though the variety of characters is rich, these 128 bonus symbols
weren’t enough to represent every available or desired character—
only a tease.

Figure 8.2 The original IBM PC “extended ASCII” character set

To accommodate more characters, early computers used code
pages. A code page represents a different collection of characters,
for both ASCII (codes 0 through 127) and the 8-bit character
codes, 128 to 255.

The characters shown in figure 8.2 for codes 128 through 255
represent IBM PC code page 437. Other code pages use different
symbols. Eventually code pages were made available for specific
foreign languages and alphabetic. Chinese, Japanese, Arabic, and
other character sets are featured on various code pages.

Commands available in the venerable MS-DOS operating system
allowed code page character sets to be switched, though the
computer was still limited to using only one code page of
characters at a time. In the system configuration file
(CONFIG.SYS), the COUNTRY command set locale details,
including available code pages. At the command prompt, the CHCP
command is used to check the current code page as well as change
the character set to a new code page.

Linux doesn’t use code pages, mostly because it implements
Unicode (see the next section). Windows, however, still uses the
same extended ASCII code page as the original IBM PC. You can
view these legacy characters when a program outputs character
code values from 128 through 255.

The source code in the following listing generates the contents of
figure 8.2. The core of the program consists of nested for loops
that output rows and columns representing the traditional extended
ASCII character set, or code page 1. Formatting within the printf()
statements ensure that the output appears in a handy table.

Listing 8.2 Source code for extended_ascii.c

#include <stdio.h>

int main()

{
 int x,y;

 printf(" "); ❶
 for(x=0; x<16; x++)

 printf(" %X ",x); ❷
 putchar('\n');

 for(x=0x80;x<0x100; x+=0x10) ❸
 {
 printf(" 0x%2x ",x);
 for(y=0; y<0x10; y++)
 {

 printf(" %c ",x+y); ❹
 }
 putchar('\n');
 }

 return(0);
}

❶ Six spaces to line up output

❷ Output header row

❸ Output left column

❹ Inner loop that outputs characters, x+y, calculating proper offset

The program generated by the extended_ascii.c source code
works best on Windows computers. If you run it under Linux or on
a Mac, the table is empty or populated with question marks. The
characters aren’t missing; they just aren’t generated in the
Linux/Unix environment unless a specific locale is set in the code.
The topic of setting a locale is covered later in this chapter.

The tasks of swapping code pages and exploring extended ASCII
character sets are no longer required to generate fancy text. With
the advent of Unicode in the 1990s, all the text encoding
inconsistencies since the early telegraph days are finally resolved.

8.1.3 Diving into Unicode

Back in the 1980s, those computer scientists who sat around
thinking of wonderful new things to do hit the jackpot. They

considered the possibilities of creating a consistent way to encode
text—not just ASCII or Latin alphabet characters, but every
scribble, symbol, and gewgaw known on this planet, both forward
and backward in time. The result, unveiled in the 1990s, is
Unicode.

The original intention of Unicode was to widen character width from
8 bits to 16 bits. This change doesn’t double the number of
characters—it increases possible character encodings from 256 to
over 65,000. But even this huge quantity wasn’t enough.

Today, the Unicode standard encompasses millions of characters,
including hieroglyphics and emojis, a sampling of which is shown in
figure 8.3. New characters are added all the time, almost every
year. For example, in 2021, 838 new characters were added.

Figure 8.3 Various Unicode characters

The current code space for Unicode (as of 2022) consists of
1,114,111 code points. Code space is the entire spectrum of
Unicode. You can think of code points as characters. Not every code
point has a character assigned, however: many chunks of the code
space are empty. Some code points are designed as overlays or
macrons to combine with other characters. Of the plethora, the first
128 code points align with the ASCII standard.

Unicode characters are referenced in the format U+nnnn, where
nnnn is the hexadecimal value for the code point. The code space is
organized into code panes representing various languages or

scripts. Most web pages that reference Unicode characters, such as
unicode-table.com, use these code planes or blocks when you
browse the collection of characters.

To translate from a Unicode code point—say, U+2665—into a
character in C, you must adhere to an encoding format. The most
beloved of these encoding formats is the Unicode Transformation
Format, UTF. Several flavors of UTF exist:

UTF-8 uses 8-bit chunks (bytes) to hold character values, with
multiple bytes containing the code for some values. The
number of bytes varies, but they’re all 8-bit chunks.

UTF-16 uses 16-bit chunks (words) to hold character values.
This format isn’t as popular as UTF-8.
UTF-32 uses 32-bit chunks (long words). All characters are
represented by 32 bits whether or not they need the storage
space. This format isn’t that popular because it occupies more
space than many code points require.

These encoding formats play a role with setting the locale, which is
the key to working with Unicode text in C. More information on the
locale is offered in section 8.2.1

The character itself is described as a wide character, or a character
that may require more than a single byte to generate output. This
topic is covered later in section 8.2.2.

Finally, be aware that not every typeface supports the entire
Unicode host. Missing characters are output as blanks, question
marks, or boxes, depending on the font. You may encounter this
problem when running some of the programs later in this chapter.
The solution is to set another font for the terminal window or to
configure the terminal window so that it’s capable of outputting
Unicode text.

http://unicode-table.com/

8.2 Wide character programming

Just outputting a wide character to the console doesn’t work. You
can try. Maybe you’ll be lucky, especially in Windows. But to
properly output and program Unicode text in your C programs, you
must first set the locale. This setting informs the computer that the
program is capable of handling wide characters.

After setting the locale, the code must access and use wide
characters for its text I/O. This process is how some text mode
programs output fancy Unicode characters in a terminal window—
and how email messages and even text messages show emojis and
other fun characters. Your program can do so as well, once you
learn the steps introduced in this section.

8.2.1 Setting the locale

Locale settings in a program establish such details as language,
date and time format, currency symbol, and others specific to a
language or region. This function and its pals allow you to write
programs for different regions while being lazy about researching,
for example, the culture’s thousands separator or currency symbol.

For wide character output, setting the proper locale allows your
code to use wide characters—the Unicode character set. Yes,
setting the locale is the secret.

To view the current locale settings in the Linux environment, type
the locale command in the terminal window. Here is the output I
see:

LANG=C.UTF-8
LANGUAGE=
LC_CTYPE="C.UTF-8"
LC_NUMERIC="C.UTF-8"
LC_TIME="C.UTF-8"
LC_COLLATE="C.UTF-8"

LC_MONETARY="C.UTF-8"
LC_MESSAGES="C.UTF-8"
LC_PAPER="C.UTF-8"
LC_NAME="C.UTF-8"
LC_ADDRESS="C.UTF-8"
LC_TELEPHONE="C.UTF-8"
LC_MEASUREMENT="C.UTF-8"
LC_IDENTIFICATION="C.UTF-8"
LC_ALL=

The UTF-8 character format is what allows Unicode text I/O—
though to enable UTF-8 output in your code, you must use the
setlocale() function, prototyped in the locale.h header file. Here is
the format:

char *setlocale(int category, const char *locale);

The first argument, category, is a defined constant representing
which aspect of the locale you want to set. Use LC_ALL to set all
categories. The LC_CTYPE category is specific to text.

The second argument is a string to set the specific locale details.
For example, for text you can specify "en_US.UTF-8", which
activates the 8-bit Unicode character set for English. An empty
string can also be specified.

The setlocale() function returns a string representing the specific
information requested. You need not use the string; setting the
locale is good enough for wide character I/O.

Be aware that the setlocale() function isn’t available in some
Windows compilers. The method for accessing Unicode characters
in Windows is different from what’s described in this chapter.

The next listing shows a tiny program that uses the setlocale()
function to output locale details—specifically, the character set in
use. Line 8 uses the setlocale() function to return a string
describing the current locale, saved in variable locale. A printf()

statement outputs the locale string. Used in this way, the
setlocale() function doesn’t change the locale settings; it only
reports information.

Listing 8.3 Source code for locale_function.c

#include <stdio.h>

#include <locale.h> ❶

int main()
{

 char *locale; ❷

 locale = setlocale(LC_ALL,""); ❸

 printf("The current locale is %s\n",locale); ❹

 return(0);
}

❶ The setlocale() function requires the locale.h header file.

❷ Pointer to a string to retain the function’s output

❸ Synchronizes the GPU so that the work completes

❹ Outputs the locale details

Here is sample output:

The current locale is C.UTF-8

The C stands for the C language. If it doesn’t, it should. UTF-8 is
the character encoding.

After setting the locale, the next step to outputting Unicode
characters is to understand the concept of wide characters.

8.2.2 Exploring character types

To invoke the magic that enables access to Unicode’s humongous
character set, you must be familiar with the three types of
characters used in computerdom:

Single-byte characters

Wide characters
Multibyte characters

Single-byte characters provide the traditional way to generate text.
These are 8-bit values, the char data type, equal to a single byte of
storage. Though char values range from 0 through 255 (unsigned),
only values 0 through 127 are assigned characters using the ASCII
standard.

The wide character data type uses more than 8-bits to encode text.
The number of bytes can vary, depending on the character. In C,
the wchar_t data type handles wide characters, and the wide
character (wchar) family of functions manipulates these characters.

A multibyte character requires several bytes to represent the
character. This description includes wide characters but also
characters that require a prefix byte, or lead unit, and then another
sequence of bytes to represent a single character. This type of
multibyte character may be used in specific applications and
computer platforms. It’s not covered in this book.

To represent a single-byte character, you use the char data type in
C. For example:

char hash = '#';

The hash character is assigned to char variable hash. The
character code is 35 decimal, 23 hex.

To represent wide characters, use the wchar_t data type. Its
definition is found in the wchar.h header file, which must be
included in your code. This header file also prototypes the various
wide character functions. (See the next section.)

The following statement declares the wide character yen:

wchar_t yen = 0xa5;

The Yen character ¥ is U+00a5. This value is assigned to wchar_t
variable yen. The compiler won’t let you assign the character
directly:

wchar_t yen = L'¥';

The L prefix defines the character as long (wide). This prefix works
like the L suffix applied to long integer values: 123L indicates the
value 123 specified as a long int value. Although this L-prefix trick
works with ASCII characters expressed as wide characters, your C
compiler most likely chokes on the attempt to compile with such a
character in the source code file; the warning I see is “Illegal
character encoding.” Your editor also may not allow you to type or
paste wide characters directly.

The L prefix is also used to declare a wide character string. Here is
a wide character string:

wchar_t howdy[] = L"Hello, planet Earth!";

The string above, "Hello, planet Earth!", is composed of
wide characters, thanks to the L prefix. The wchar_t data type
declares wide string howdy.

As with single characters, you cannot insert special characters into
a wide string. The following declaration is flagged as illegal
character encoding:

wchar_t monetary[] = L"$¥€₤";

Such a string is instead composed in this manner:

wchar_t monetary[] = {
 0x24, 0xa5, 0x20ac, 0xa3, 0x0
};

Hex values above represent the characters dollar sign, yen, euro,
and British pound, followed by the null character caboose to
terminate the string.

To output wide characters and wide strings, use the wprintf()
function. This function works like the standard library printf()
function, though it deals with wide strings. Special placeholders are
used for wide characters and wide strings:

The %lc placeholder represents a single wide character.

The %ls placeholder represents a wide string.

Lowercase L in the placeholder identifies the target variable as the
wide or wchar_t data type. This character is analogous to the little
L in the %ld placeholder for long decimal integer values.

8.2.3 Generating wide character output

To output wide characters in C, you employ the functions declared
in the wchar.h header file, which also conveniently defines the
wchar_t data type. The functions parallel the standard string
functions (from string.h), with most companion functions
prefixed by a w or some other subtle difference. For example, the
wide character version of printf() is wprintf().

Oh, and you need the locale.h header file because the wide
character functions must be activated by first setting the locale.
Refer to section 8.2.1 for details on using the setlocale() function.

The next listing shows source code that uses the wprintf() function
in the traditional “Hello, world!” type of program, with my own wide
twist. The setlocale() function isn’t required because the output is
ASCII, albeit wide ASCII, which is why the wprintf() formatting
string is prefixed by an L (long, or wide character). The stdio.h
header isn’t required because none of its functions appear in the
code.

Listing 8.4 Source code for hello_wworld01.c

#include <wchar.h> ❶

int main()
{

 wprintf(L"Hello, wide world!\n"); ❷

 return(0);
}

❶ Wide character definitions and functions

❷ The wprintf() function is analogous to the printf() function. The L prefix is required for a string composed

of wide characters. Even though the text here is ASCII, wide characters are used internally to represent

the text.

Here is the program’s output:

Hello, wide world!

Nothing surprising, but don’t let the lack of suspense lull you into a
false sense of familiarity. To help ease you into the wide character
functions, you can modify the code in two steps.

First, set the string as its own declaration earlier in the code:

wchar_t hello[] = L"Hello, wide world!\n";

The wchar_t data type defines array hello[] composed of
characters present in the wide string. If the L prefix is omitted, the
compiler barfs up a data type mismatch error. Yes, it’s an error: the

code won’t compile. To create a wide string, you need both the
wchar_t data type and the L prefix on the text enclosed in double
quotes.

Second, modify the wprintf() statement to output the string:

wprintf(L"%ls",hello);

The L prefix is required for the formatting string, because all wide
character functions deal with wide characters. The %ls placeholder
represents a string of wide characters. Argument hello references
the address of the wide hello[] array.

These two updates to the hello_wworld01.c code are found in
the online repository in the source code file hello_wworld02.c.
The output is the same as from the first program.

To output a single wide character, use the putwchar() function. It
works like putchar(), and it’s one of several wide character
functions where the w is found in the middle of its name.

The code in the next listing outputs the four playing card suits:
spades, hearts, clubs, and diamonds. Their Unicode values are
assigned as elements of the suits[] array. The setlocale()
function is required because these are not ASCII characters. Within
the for loop, the putwchar() function outputs the characters. A final
putwchar() function outputs a newline—a wide newline.

Listing 8.5 Source code for suits.c

#include <wchar.h>
#include <locale.h>

int main()
{
 const int count = 4;
 wchar_t suits[count] = {

 0x2660, 0x2665, 0x2663, 0x2666 ❶

 };
 int x;

 setlocale(LC_CTYPE,"en_US.UTF-8"); ❷

 for(x=0; x<count; x++)

 putwchar(suits[x]); ❸
 putwchar('\n');

 return(0);
}

❶ Unicode values for the four playing card suits

❷ The locale is set because these are not ASCII characters.

❸ The putwchar() function outputs each wide character value.

Here is the code’s output:

♠♥♣♦

On my Linux systems, the output is monochrome. But on my
Macintosh, the hearts and diamonds symbols are colored red. This
difference is based on the font used. The Mac seems to have a
better selection of Unicode characters available in its terminal
window than are available in my Linux distro.

The code for suits.c illustrates how many Unicode strings are
created and then output. The technique for creating the suits[]
array is how you build a wide character string from scratch, though
suits[] is a character array and not a string, which must be
terminated with the null character.

In the following listing, three Unicode strings are declared in the
main() function. Each one ends with newline and null characters.
The fputws() function sends the strings as the output to the stdout
device (file handle, defined in stdio.h). This function is the
equivalent of the fputs() function.

Listing 8.6 Source code for wide_hello.c

#include <stdio.h> ❶
#include <wchar.h>
#include <locale.h>

int main()
{

 wchar_t russian[] = { ❷
 0x41f, 0x440, 0x438, 0x432, 0x435, 0x442, '!' , '\n', '\0'
 };
 wchar_t chinese[] = {
 0x4f31, 0x597d, '\n', '\0'
 };
 wchar_t emoji[] = {
 0x1f44b, '\n', '\0'
 };

 setlocale(LC_ALL,"en_US.UTF-8");

 fputws(russian,stdout); ❸
 fputws(chinese,stdout);
 fputws(emoji,stdout);

 return(0);
}

❶ Required for the definition of stdout

❷ Each array is created as a string, including the newline and null characters.

❸ The fputws() function requires a wide string and file handle as arguments.

Figure 8.4 shows the output generated by the wide_hello.c
program. This screenshot is from my Macintosh, where the
Terminal app properly generates all the Unicode characters. The
output looks similar in Linux, though under Windows 10 Ubuntu
Linux, only the Cyrillic text is output; the rest of the text appears
as question marks in boxes. These generic characters mean that
the Unicode characters shown in figure 8.4 are unavailable in the
terminal’s assigned typeface.

Figure 8.4 The properly interpreted output of the wide_hello.c program

The inability of some typefaces to properly render portions of the
Unicode character set is something you should always consider
when coding wide text output.

Not every string you output requires all wide text characters, such
as those strings shown in listing 8.6. In fact, most often you may
find a single character required in a string of otherwise typable,
plain ASCII text. One way to sneak such a character into a string is
demonstrated next. Here, the Yen character (¥) is declared on its
own as wchar_t variable yen. This value is output in the wprintf()
function by using the %lc placeholder.

Listing 8.7 Source code for yen01.c

#include <wchar.h>
#include <locale.h>

int main()
{

 wchar_t yen = 0xa5; ❶

 setlocale(LC_CTYPE,"en_US.UTF-8");

 wprintf(L"That will be %lc500\n",yen); ❷

 return(0);
}

❶ The character is specified by its Unicode value, U-00A5.

❷ The %lc placeholder represents the wide character value in yen.

Here is the code’s output:

That will be ¥500

In the code, I set the locale LC_CTYPE value to en_US.UTF-8,
which is proper for the English language as it’s abused in the
United States. You don’t need to set the Japanese locale
(ja_JP.UTF-8) to output the character.

Another way to insert a non-ASCII Unicode character in a string is
substitution. For example, you can create a wide character string of
ASCII text, then plop in a specific character before the string is
output.

To modify listing 8.7, first you create a wide character string with a
placeholder for the untypable Unicode character:

wchar_t s[] = L"That will be $500\n";

At element 13 in wide character string s[], I’ve used a dollar sign
instead of the Yen sign I need. The next step is to replace this
element with the proper wide character:

s[13] = 0xa5;

This assignment works because all characters in string s[] are
wide. Character code 0xa5 replaces the dollar sign. The string is
then output with this statement:

wprintf(L"%ls",s);

This update to the code is named yen02.c, and it’s found in this
book’s online repository. If you perform a trick like this, ensure that
you properly document what value 0xa5 is, so as not to confuse
any other programmers who may later examine your code.

EXERCISE 8.1

Using the method described earlier, and available in the source
code file yen02.c, substitute a Unicode (untypable) character in a
string. Create a program that outputs this text:

I ♥ to code.

The Unicode value for the heart symbol is U+2665, shown earlier in
the suits.c source code.

My solution is available in the online repository as code_love.c.

8.2.4 Receiving wide character input

Wide character input functions are prototyped in the wchar.h
header file along with their output counterparts, covered in the
preceding section. Like the wide character output functions, these
input functions parallel those of standard input. For example, the
getwchar() function receives wide character input just as the
getchar() function receives normal character input. Or should it be
called thin character input?

The tricky part about wide character input is how to generate the
wide characters. Standard keyboard input works as it always does
—the characters interpreted as their wide values. Some keyboards

have Unicode character keys, such as the £ or € symbols. Check to

see whether your Linux terminal program allows for fancy character
input methods, often from a right-click menu. When these tools
aren’t available to you, the only trick left is to copy and paste
Unicode characters from elsewhere, such as a web page or the
output of some Unicode-happy application.

The source code for mood.c is shown in the following listing. It
uses the getwchar() function to process standard input, including
wide characters. The single-character input is echoed back in the
wprintf() statement. The %lc placeholder represents wchar_t
variable mood.

Listing 8.8 Source code for mood.c

#include <locale.h>
#include <wchar.h>

int main()
{

 wchar_t mood; ❶

 setlocale(LC_CTYPE,"en_US.UTF-8");

 wprintf(L"What is your mood? "); ❷

 mood = getwchar(); ❸

 wprintf(L"I feel %lc, too!\n",mood); ❹

 return(0);
}

❶ The single wide character variable mood holds input.

❷ This string is ASCII, but the L prefix makes it composed of wide characters.

❸ Obtains a wide character from standard input and stores it in wchar_t variable mood

❹ The %lc placeholder represents wide character mood.

The program created by mood.c reads from standard input,
though any text you type is represented internally by using wide
characters. Therefore, the program runs whether you type a
Unicode character or any other keyboard character, as in this
example:

What is your mood? 7
I feel 7, too!

The true test, however, is to type a Unicode character, specifically
an emoji. With some versions of Linux (not the Windows version),
you can right-click (or control-click) in the terminal window to
access emoji characters for input.

In Windows, press the Windows and period keys on the keyboard
to bring up an emoji palette. This trick works in the Ubuntu Linux
shell window.

On the Macintosh, press the Ctrl+Command+Space keyboard
shortcut to see a pop-up emoji palette, as shown in figure 8.5.
From this palette, you can choose an emoji to represent your
mood, which then appears in the output string.

Figure 8.5 Using the Macintosh emoji input panel in the Terminal app

As a last resort, you can copy and paste the desired character from
another program or website. Providing that the terminal window’s

typeface has the given character, it appears in the program’s
output.

The getwchar() function deals with stream input the same way that
getchar() does; it’s not an interactive function. Review chapter 4
for information on stream I/O in C. The same rules apply to wide
characters as they do to the standard char data type.

To read more than a single character, use the fgetws() function.
This function is the wide character version of fgets(), with a similar
set of arguments. Here is the man page format:

wchar_t *fgetws(wchar_t *ws, int n, FILE *stream);

The first argument is a wchar_t buffer to store input. Then comes
the buffer size, which is the input character count minus one for
the null character, which is automatically added, and finally, the file
stream, such as stdin for standard input.

The fgetws() function returns the buffer’s address upon success or
NULL otherwise.

The source code for wide_string_in.c, illustrated in the next
listing, shows how the fgetws() function is used. The wide
character buffer input stores wide characters read from the
standard input device (stdin). A wprintf() function outputs the
characters stored in the input buffer.

Listing 8.9 Source code for wide_in.c

#include <stdio.h> ❶
#include <wchar.h>
#include <locale.h>

int main()
{

 const int size = 32; ❷

 wchar_t input[size]; ❸

 setlocale(LC_CTYPE,"UTF-8");

 wprintf(L"Type some fancy text: ");

 fgetws(input,size,stdin); ❹

 wprintf(L"You typed: '%ls'\n",input); ❺

 return(0);
}

❶ Required for the definition of stdin

❷ Uses a constant to set the buffer size

❸ Wide character input buffer

❹ Reads the size characters into the input buffer from standard input

❺ Uses the %ls placeholder to output the wide character string

The program created from the wide_in.c source code works like
any basic I/O program—something you probably wrote when you
first learned to program C. The difference is that wide characters
are read, stored, and output. So, you can get fancy with your text,
as shown in this sample run:

Type some fancy text:
You typed: '
'

As with standard input and the fgets() function, the newline
character is retained in the input string. You see its effect on the
output where the final single quote appears on the following line.

Another wide input function I reluctantly want to cover is wscanf().
This function is based on scanf(), which is perhaps my least
favorite C language input function, though it does have its
purposes. Still, the function is a booger to work with because you
must get the input data just right or else the thing collapses like a
professional soccer player with a hangnail.

Here is the man page for wscanf():

int wscanf(const wchar_t *restrict format, ...);

This format is identical to that of the scanf() function, though the
formatting string (the first argument) is composed of wide
characters. If you use this function, you will probably forget the L
prefix on the formatting string at least once or twice.

Listing 8.10 shows a silly I/O program, one that I may use in a
beginner’s programming book. The only Unicode character involved
is the British pound sign (£), which is declared early in the code.
Otherwise, pay attention to how the wscanf() function uses the L
prefix for its formatting string. All the statements output wide
characters. Input can be in wide characters as well, though only
ASCII digits 0 through 9 hold any meaning to the code.

Listing 8.10 Source code for wscanf.c

#include <wchar.h>
#include <locale.h>

int main()
{

 const wchar_t pound = 0xa3; ❶
 int quantity;
 float total;

 setlocale(LC_CTYPE,"en_US.UTF-8");

 wprintf(L"How many crisps do you want? ");

 wscanf(L"%d",&quantity); ❷

 total = quantity * 1.4; ❸

 wprintf(L"That'll be %lc%.2f\n", ❹
 pound,
 total
);

 return(0);
}

❶ The pound character is defined as a wchar_t constant.

❷ Just like a scanf() statement, but with a wide character formatting string

❸ Random math, just to have the code do something

❹ The %lc placeholder outputs the pound symbol; %.2f formats the amount to two decimal places.

Here is a sample run:

How many crisps do you want? 2
That'll be £2.80

They must be very nice crisps.

EXERCISE 8.2

Source code file wide_in.c (listing 8.9) processes a string of
input. But when the string is shorter than the maximum number of
characters allowed, the newline is retained in the string. Your task
is to modify the source code so that any newline in the string is
removed from output.

One way to accomplish this task is to write your own output
function. That’s too easy. Instead, you must create a function that
removes the newline added by the fgetws() function, effectively
trimming the string.

My solution is available in this book’s online repository as
wide_in_better.c. Please try this exercise on your own before
you sneak a peek at my solution.

8.2.5 Working with wide characters in files

The wchar.h header file also defines wide character equivalents of
file I/O functions available in the standard C library—for example,
fputwc() to send a wide character to a stream, the equivalent of
fputc(). These wide character functions are paired with the
standard library file I/O functions, such as fopen(). This mixture
creates an exciting pastiche of wide and nonwide characters, so
mind your strings!

As with standard I/O, your wide character file functions must set
the locale. The file must be opened for reading, writing, or both.

Wide character file I/O functions are used to put and get text from
the file. The WEOF constant is used to identify the wide end-of-file
character, wint_t data type. Once the file activity is done, the file is
closed. This operation should be familiar to you if you’ve worked
with file I/O in C.

As an example, consider code to output the 24 uppercase letters of
the Greek alphabet, alpha to omega, Α (U+0391) to Ω (U+03A9),
saving the alphabet to a file. The Unicode values increment
successively for each letter, though a blank spot exists at code
U+03A2. These values parallel the lowercase Greek alphabet, which
starts at U+03B1. The uppercase blank spot keeps the upper- and
lowercase values parallel, as two lowercase sigma characters are
used in Greek. These Unicode values are represented by constants
within the code:

const wchar_t alpha = 0x391;
const wchar_t omega = 0x3a9;
const wchar_t no_sigma = 0x3a2;

After the file is created, the uppercase Greek characters are written
to the file one at a time, using a for loop as shown in the next
listing. Constants alpha and omega represent the first and last
characters’ Unicode values. The wchar_t constant no_sigma is
used in an if test with the loop so that its character (U+03A2,
which is blank) is skipped.

Listing 8.11 A loop that writes the uppercase Greek alphabet to a file

wprintf(L"Writing the Greek alphabet...\n"); ❶

for(a=alpha; a<=omega; a++) ❷
{

 if(a==no_sigma) ❸

 continue; ❹

 fputwc(a,fp); ❺

 fputwc(a,stdout); ❻
}

fputwc('\0',fp); ❼

❶ Lets the user know what’s going on

❷ Loops through the Greek alphabet

❸ Tests for the blank spot and . . .

❹ . . . skips over this noncharacter, continuing the loop

❺ Writes the Greek letter to the file (FILE pointer fp)

❻ Also sends the character to standard output

❼ Writes a null character to the file so that wide string file input functions can be used to read it in later

The rest of the code, not shown in listing 8.11, is available in this
book’s online repository in the source code file greek_write.c.
Missing are the statements to open and close the file, along with
various variable declarations. Here is sample output:

Writing the Greek alphabet...
ΑΒΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΩ
Done

With the locale set, the file contains the Greek uppercase alphabet
and not junk. Because the terminal window is intelligent enough to
recognize Unicode, you can use the cat command to dump the file:

$ cat alphabeta.wtxt
ΑΒΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΩ $

The filename is alphabeta.wtxt. I made up the wtxt extension
for a wide text file. You also see that the file’s content lacks a
newline, which is why the command prompt ($) appears after the
Omega.

Here is output from the hexdump utility, to show the file’s raw
bytes:

0000000 91ce 92ce 93ce 94ce 95ce 96ce 97ce 98ce
0000010 99ce 9ace 9bce 9cce 9dce 9ece 9fce a0ce
0000020 a1ce a3ce a4ce a5ce a6ce a7ce a8ce a9ce
0000030 0000
0000031

Several approaches are possible for reading wide characters from a
file. Because I wrote the null character at the end of the alphabet,
you can use the fgetws() function to read in the line of text. This
function is the wide character sibling of the fgets() function.

The following listing shows the file-reading code, found in source
code file greek_read01.c in this book’s online repository.
Traditional file I/O commands open the file. The locale is set. Then
the fgetws() function does its magic to read the uppercase alphabet
wide string. The line is output, and the file is closed.

Listing 8.12 Source code for greek_read01.c

#include <stdio.h>
#include <stdlib.h>
#include <wchar.h>
#include <locale.h>

int main()
{

 const char *file = "alphabeta.wtxt"; ❶

 const int length = 64; ❷
 FILE *fp;

 wchar_t line[length]; ❸

 fp = fopen(file,"r"); ❹

 if(file==NULL) ❺
 {
 fprintf(stderr,"Unable to open %s\n",file);
 exit(1);
 }

 setlocale(LC_CTYPE,"en_US.UTF-8");

 wprintf(L"Reading from %s:\n",file); ❻

 fgetws(line,length,fp); ❼

 wprintf(L"%ls\n",line); ❽

 fclose(fp);

 return(0);
}

❶ The file to open

❷ Defines a constant for the input buffer

❸ The wide character input buffer

❹ Opens the file for reading

❺ Handles any errors

❻ Lets the user know what’s going on

❼ Reads a line of text from the file (up to the null character)

❽ Outputs the line read

Because the source code for greek_write.c adds a null
character to the end of the alphabet, the fgetws() function in
greek_read01.c reads text from the file in one chunk: like the
fgets() function, fgetws() stops reading when it encounters the null
byte, a newline, or the buffer fills. Here is the program’s output:

Reading from alphabeta.wtxt:
ΑΒΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΩ

To read one wide character at a time from a file, use the fgetwc()
function, which is the wide character counterpart of fgetc(). Like
fgetc(), the value returned by fgetwc() isn’t a character or even a
wide character. It’s a wide integer. Here is the fgetwc() function’s
man page format:

wint_t fgetwc(FILE *stream);

The function’s argument is an open file handle, or stdin for
standard input. The value returned is of the wint_t data type. As
with fgetc(), the reason is that the wide end-of-file marker, WEOF,
can be encountered, which the wchar_t type doesn’t interpret
properly.

To modify the code from greek_read01.c to read single
characters from the file, only a few changes are required:

The line[] buffer is removed, along with the length constant. In
its place, a single wint_t variable is declared:

wint_t ch;

To read from the file, the fgetws() statement, as well as the
wprintf() statement, are replaced with these statements:

while((ch=fgetwc(fp)) != WEOF)
 putwchar(ch);
putwchar('\n');

The while loop’s condition both reads a character (a wint_t value)
from the open file handle fp. This value is compared with WEOF,
the wide character end-of-file marker. As long as the character isn’t
the end of file, the loop repeats.

The loop’s sole statement is putwchar(ch), which outputs the
character read. A final putwchar() statement outputs a newline,
cleaning up the output.

The complete source code for greek_read02.c is available in this
book’s online repository. The program’s output is the same as for
the program version that used the fgetws() function to read the
alphabet:

Reading from alphabeta.wtxt:
ΑΒΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΩ

EXERCISE 8.3

Using my Greek alphabet programs as a guide, create code that
writes the Cyrillic alphabet to a file. You can optionally write a
program that reads in the Cyrillic alphabet from the file you create,
though the cat command works just as well.

The first letter of the Cyrillic alphabet, , is U+0410. The last letter
is Я, U+042F. These are the uppercase letters. Unlike Greek, no
blanks are found in the Unicode sequence.

My solution is called cyrillic.c, and it’s available in this book’s
online code repository.

9 Hex dumper

I’ve looked with my own eyes and I just can’t see files stored on
media. This task was easier in the old days, when you could pop out a
floppy disk and see the actual media. The data on the media, however,
remains encoded as teensy electronic particles, invisible to the naked
eye—or even to an eye with clothes on. No, the only way to peer into a
file’s raw contents is to use a utility, something like hexdump.

Yes, hexdump is a Linux utility, available as part of the default
installation. It’s quite capable and popular among the nerds. There’s no
need to re-create it—unless you want to improve upon it. Or perhaps
you want to expand your knowledge of programming and learn a few
tricks along the way, such as:

Examining storage at the basic level

Properly outputting byte-size data

Reading raw data from a file

Adjusting and aligning program output
Adding and processing command-line switches

The goal of this chapter isn’t to ape the hexdump utility but rather to
see how much you can understand what it does and appreciate it more
by doing it yourself. Along the way, you’ll discover more about writing
such utilities and how to hone your own programs to work the way you
prefer.

9.1 Bytes and data

Computers know nothing of bytes. Digital information is stored in bits
—bit is a collision of the words binary and digit. Binary digits are 1 and
0, and a bit is either 1 or 0. Bytes cluster bits into convenient, happy
groups, where they represent larger numbers.

One question raised from the early days of computing is how many bits
pack into a byte? If the techies wanted to do so, a computer’s entire
storage space could be a single byte that is billions of bits long. Such
length would be painfully impractical. So, the nerds organized bits into
smaller chunks, with byte sizes ranging from a few bits to over a dozen
bits per byte.

Today the standard is eight bits per byte. But even then, larger-
capacity storage is necessary when dealing with information in a
computer.

9.1.1 Reviewing storage units and size mayhem

Way back when computer nerds sported slicked-back hair, skinny black
ties, horn-rimmed glasses, and prized pocket protectors—yes, even the
women—a byte, or syllable, as it was known, was composed of any
number of bits, depending on the system hardware. I remember using
mainframes with 12-bit bytes. I know of smaller, custom systems that
used 6-bit bytes. When the microcomputer craze transformed these
machines into the must-have-computers-for-business craze in the early
1980s, the computer world settled on 8-bit bytes.

In C, the 8-bit byte corresponds directly to the char data type.
Although you won’t find any of the C grand poohbahs who openly
admit that, yes, “a byte is a char,” it’s pretty much true. (Even so, be
aware that data types are implementation-dependent in C.)

Computers deal with larger values than bytes, which requires their
organization into chunks called words (16-bit), doublewords (32-bit),
quadwords (64-bits), and double-quad words (128-bits). This word-
jumble-worthy mayhem is summarized in table 9.1, minus the double-
quad word because its values can’t fit in the table.

Table 9.1 Bit width descriptions and details

Bit

width

Description Data

type

Value range (signed) Value range (unsigned)

8 Byte char -128 to 127 0 to 255

16 Word short -32,768 to 32,767 0 to 65,535

32 Doubleword Int -2,147,483,648 to

2,147,483,647

0 to 4,294,967,295

64 Quadword long -9,223,372,036,854,775,808

to

9,233,372,036,854,775,807

0 to

18,446,744,073,709,551,615

Values shown in table 9.1 are related to the data chunk’s bit width. For
example, the range of a doubleword is from -231 to 231 - 1. If a 128-bit
integer were available in C (and some language extensions offer it), its
signed value would range from -2127 to 2127 - 1. Were this book’s
margins wide enough, I’d write out the specific values in full. Or—
better—if this book had a centerfold, I’m sure that the value 2127 - 1
printed out would be appealing to some programmers.

You can quickly cobble together a C program that reveals the values of
the various data types and their bit widths. To do so, you need to know
the size of each data type. For example, use this expression to obtain
the size of a byte in bits:

unsigned long byte = sizeof(char)*8;

The sizeof operator returns the number of bytes used by a specific C
language data type, char, described earlier. This value is multiplied by
eight to obtain the number of bits. The result is stored in unsigned long
variable byte; the sizeof operator returns an unsigned long value.
Similar statements are used for word/short, doubleword/int, and
quadword/long variables and data types.

Use this printf() statement to output the values:

printf("%11s %2lu bits %21.f\n",
 "Byte",
 byte,
 pow(2,byte)
);

The printf() function’s format string ensures that values output are
spaced properly, formatted for a table. Several statement output
details for each data type, resulting in a table that lists the data size,
the number of bits, and then the decimal size value. The pow()
function raises the power of two to the number of bits pow(2,byte).
The pow() function requires inclusion of the math.h header file.

The source code file containing all the printf() statements to output a
data type table is available in this book’s online archive as
byte_sizes.c. It requires you to link the math library: in Linux,
ensure that you specify the -lm switch as the compiler’s final
command-line option to link in the math (m) library. Here is sample
output:

 Byte 8 bits 256
 Word 16 bits 65536
 Doubleword 32 bits 4294967296
 Quadword 64 bits 18446744073709551616

You don’t need to perform the math and overhead used in the
byte_sizes.c code. The reason is that the compiler itself has a limit.
Specifically, the limit values are set as defined constants in the
appropriately named limits.h header file.

The next listing outputs the popular constants defined in limits.h.
Run this code on your system to see what the values and ranges are,
though for most programmers these values align with those shown
back in table 9.1. The key to the code is identifying the defined
constants in limits.h. These defined constants appear here.

Listing 9.1 Source code for limits.c

#include <stdio.h>
#include <limits.h>

int main()
{
 printf("Char:\n");

 printf("\tNumber of bits: %d\n",CHAR_BIT); ❶

 printf("\tSigned minimum: %d\n",SCHAR_MIN); ❷

 printf("\tSigned maximum: %d\n",SCHAR_MAX); ❸

 printf("\tUnsigned max: %d\n",UCHAR_MAX); ❹

 printf("Short:\n");
 printf("\tSigned minimum: %d\n",SHRT_MIN);
 printf("\tSigned maximum: %d\n",SHRT_MAX);
 >printf("\tUnsigned max: %d\n",USHRT_MAX);

 printf("Int:\n");
 printf("\tSigned minimum: %d\n",INT_MIN);
 printf("\tSigned maximum: %d\n",INT_MAX);

 printf("\tUnsigned max: %u\n",UINT_MAX); ❺

 printf("Long:\n");

 printf("\tSigned minimum: %ld\n",LONG_MIN); ❻
 printf("\tSigned maximum: %ld\n",LONG_MAX);

 printf("\tUnsigned max: %lu\n",ULONG_MAX); ❼

 printf("Long long:\n");

 printf("\tSigned minimum: %lld\n",LLONG_MIN); ❽
 printf("\tSigned maximum: %lld\n",LLONG_MAX);

 printf("\tUnsigned max: %llu\n",ULLONG_MAX); ❾

 return(0);
}

❶ The char type is the only one that seems to have the “BIT” defined constant.

❷ Signed char maximum

❸ Signed char minimum

❹ Unsigned char maximum; zero is minimum.

❺ Unsigned integer max uses the %u placeholder.

❻ Long integers require the %ld placeholder.

❼ Unsigned long requires %lu placeholder.

❽ Double-longs require %lld.

❾ The double-unsigned long placeholder is %llu.

The output appears here, though the point of the exercise is that these
minimum and maximum values can be obtained from the constants
defined in the limits.h header file; your code need not do the math:

Char:
 Number of bits: 8
 Signed minimum: -128
 Signed maximum: 127
 Unsigned max: 255
Short:
 Signed minimum: -32768
 Signed maximum: 32767

 Unsigned max: 65535
Int:
 Signed minimum: -2147483648
 Signed maximum: 2147483647
 Unsigned max: 4294967295
Long:
 Signed minimum: -9223372036854775808
 Signed maximum: 9223372036854775807
 Unsigned max: 18446744073709551615
Long long:
 Signed minimum: -9223372036854775808
 Signed maximum: 9223372036854775807
 Unsigned max: 18446744073709551615

When you desire a specific size integer, it’s best to use the specific
integer type variables. The following types are available:

int8_t for 8-bit integers

int16_t for 16-bit integers

int32_t for 32-bit integers
int64_t for 64-bit integers

Variables declared with these types are always at the specific width
indicated. These typedef values (which is what the _t suffix indicates)
are defined in the stdint.h header file, which is automatically
included in stdio.h for most C compilers. So, feel free to use these
data type definitions to utilize an integer value of a specific width.

The reason for these exact integer width types is historical. When I
first learned to program C, the int data type was 16 bits wide. Today,
it’s 32. Yet the int16_t and int32_t types are always set to the width
indicated.

Given the variety of integer widths, a byte is still the basic counting
unit in a computer. Memory capacity, media storage, file size—all these
quantities are measured in 8-bit bytes, char values. This yardstick
gives rise to two systems for counting bytes: one based on the powers
of two (binary), the other on the powers of 10 (decimal).

The traditional way to count bytes, what I grew up with, is the kilobyte
system: when I was a proto-nerd, 1 K was one kilobyte of data, or

1024 bytes. The value 1,024 is 210, which seemed good enough for
computer nerds; 1,024 is close enough to 1,000 for digital accounting
purposes, with the extra 24 bytes often taken away by the government
in the form of taxes. It was proper in the day to tell beginners that 1 K
was “about 1,000 bytes.” Alas, this logical, binary definition no longer
holds.

Today, 1,024 bytes is known as a kibibyte. If you refer to a kilobyte,
the experts now claim this value is 1,000 bytes.

A kilobyte (KB) is 1,000 bytes.
A kibibyte (KiB) is 1,024 bytes.

The reason for the change is that the terms kilo, mega, giga, and so on
mean one thousand, one million, and one billion exactly when
describing quantities in the noncomputer world: a kilometer is 1,000
meters, not 1,024 meters. For consistency, our digital overlords
decreed that the term kilobyte must also mean exactly 1,000 bytes.
The traditional value of 1,024 bytes, or 210, is demoted to the silly term
kibibyte, which sounds like a dog food.

Other values to annoy me include mebibyte (MiB) for 220 or 1,048,576,
and gibibyte (GiB) for 230 or 1,073,741,824. To me, these are still
megabyte (MB) and gigabyte (GB). Anything else is just foolhardy
conformist insanity.

9.1.2 Outputting byte values

Forget those wishy-washy C overlords, and in this section accept that a
byte is the same size as a character. When you allocate 1 K of memory,
you’re setting aside 1,024 (yes) char-sized pieces of memory as a
single chunk. Output a value in the range from 0 to 255, and you’re
outputting a byte. To deal with memory, you deal with bytes, char-
sized chunks. This information is common; nerds everywhere accept it.

EXERCISE 9.1

Write code that outputs char values from 0 to 255. Each value is
output on a line by itself. This exercise may seem mindlessly simple,
but I strongly urge you to try it. Come on! It’s just a few lines of code.
Save your solution as byte_values01.c.

Here is the output from my solution, minus a long chunk of numbers in
the middle:

0
1
2
3
...
253
254
255

Without peeking ahead at my solution, did you try a for loop? Did you
first attempt the solution by using a char variable and then attempt
with unsigned char? Did you force the output using a technique that
didn’t seem obvious at first?

Seriously: if you haven’t attempted to code a solution, do so now.

My solution appears in the next listing. It uses an endless while loop,
carefully constructed so that the loop terminates when the value of
variable a is equal to 255.

Listing 9.2 Source code for byte_values01.c

#include <stdio.h>

int main()
{

 unsigned char a; ❶

 a = 0;

 while(1) ❷
 {

 printf("%d\n",a); ❸

 if(a==255) ❹
 break;

 a++; ❺
 }

 return(0);
}

❶ The range for unsigned char is from 0 to 255.

❷ Loops endlessly

❸ Outputs the value

❹ Once the value hits 255, breaks the loop

❺ Otherwise, increments variable a

The solution shown in listing 9.2 isn’t my first attempt. No, like you (if
you actually completed the exercise), I started with a for loop:

for(a=0; a<=255; a++)
 printf("%d\n",a);

This for loop never terminates. The compiler may warn, but the loop
has no end. Even though the maximum value for an unsigned char is
255 and it seems like the condition is met, it never will be: The value
of variable a wraps from 255 down to 0 again and again.

Further, if you want to examine bytes, output them, or otherwise deal
with their values, you must use the int data type. All char or byte-size
values easily fit within an integer-sized chunk. The int data type avoids
any wrapping that occurs with a char, which is probably one reason
why functions like getchar() and putchar() use integers instead of char
types.

The next listing modifies the source code from listing 9.2 by storing the
256 char values in a char array, data[]. Two for loops process the
array, the first to fill it and the second to output its values. Though the
array stores only byte values, int variable b is used to store the values.

Listing 9.3 Source code for byte_values02.c

#include <stdio.h>

int main()
{

 unsigned char data[256]; ❶
 int b;

 for(b=0; b<256; b++) ❷

 data[b] = b;

 for(b=0; b<256; b++) ❸
 printf("%d\n",data[b]);

 return(0);
}

❶ Room for the full variety of byte values

❷ Fills the array with values 0 through 255

❸ Outputs the array, with each value on a line by itself

The output from byte_values02.c is identical to the first program,
but the new format, with an array holding the values, allows for
modifications and manipulations to be made to the stored data. The
goal is to accurately present the data in a readable format. The
inelegant term for doing so is dump.

9.1.3 Dumping data

Dump is both a noun and a verb, neither of which is flattering. Case in
point: no type of food preparation uses the word dump. The term is
inelegant and crude, and what’s being dumped isn’t considered useful
—unless it’s data.

In the digital realm, a dump is the movement of data from one place to
another. You may be familiar with the notorious term core dump, which
is what happens when your program horrifically screws up and the
operating system barfs memory and processor content in the vain hope
that you’ll examine the data to determine what’s wrong. Don’t worry—
you won’t.

Computer hobbyists from the early days may remember the term
screen dump. It was a copy of all the text on the screen sent to a
printer. IBM curtailed the term’s use when they added the Print Screen
key to their first PC’s keyboard. Suddenly the screen dump became a
“print screen,” though pressing the key still dumped all text from the
screen to the printer.

To dump data in C, you copy it from one location to another. You can
dump a chunk of memory, though only the memory the program has
access to. More frequently, you dump the contents of a file as
hexadecimal output on the screen. A programmer can examine the raw
data and hopefully gain insight into what’s going on or glean some
other useful tidbit of information. I’ve experienced many “aha!”
moments while examining file dumps.

To dump data from memory, you can modify the existing source code
file byte_values01.c. The first change is to dump the data in
hexadecimal. Decimal byte values are familiar to humans, but hex
digits for values 0 through 255 all neatly pack into two-digit
sequences. Further, most nerds recognize hex values and their binary
equivalents. This relationship makes it easy to troubleshoot. For non-
nerd reference, table 9.2 lists hex values and their relationship to
binary with decimal thrown in just because.

Table 9.2 Decimal, hexadecimal, and binary values

Decimal Hex Binary Decimal Hex Binary

0 0 0000 8 8 1000

1 1 0001 9 9 1001

2 2 0010 10 A 1010

3 3 0011 11 B 1011

4 4 0100 12 C 1100

5 5 0101 13 D 1101

6 6 0110 14 E 1110

7 7 0111 15 F 1111

Hex dumps are brief and useful. After all, a nerd who may not
understand “01001000 01100101 01101100 01101100 01101111
00101100 00100000 01101110 01100101 01110010 01100100
00100001” certainly understands “48 65 6C 6F 2C 20 6E 65 72 64 21”.

To output hex, line 12 in the source code for byte_values02.c is
altered: the %d placeholder is replaced by %02X to output a 2-digit
uppercase hex value with a leading zero when necessary:

printf("%02X\n",data[b]);

The updated code’s output now ranges from 00 through FF, the full
spectrum of byte values. But it’s all still output in a single column,
which isn’t efficient.

The second change pads each byte value output with a leading space
and eliminates the newline:

printf(" %02X",data[b]);

To keep output clean, a putchar() statement is added after the second
for loop:

putchar('\n');

The code’s output now appears all on one screen, but inelegantly:

 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1
A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34
35 36 37 38 39 3A 3B 3C 3D 3E 3F 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
 50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F 60 61 62 63 64 65 66 67 68 69 6
A 6B 6C 6D 6E 6F 70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F 80 81 82 83 84
85 86 87 88 89 8A 8B 8C 8D 8E 8F 90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F
 A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B
A BB BC BD BE BF C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF D0 D1 D2 D3 D4
D5 D6 D7 D8 D9 DA DB DC DD DE DF E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF
 F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF

To improve the code further, a newline is output every 16 bytes,
because 16 is a happy value for hexadecimal. The following
modification to the code’s second for loop adds the newline, which
incorporates the recently added putchar() statement:

for(b=0; b<256; b++)
{
 printf(" %02X",data[b]);
 if((b+1)%16==0)
 putchar('\n');
}

The if test uses variable b’s value to determine when to add a newline.
One is added to the value of b, (b+1), to avoid a newline popping out
after the first value (zero). Otherwise, each time the value of b is
evenly divisible by 16, a newline is output. Here is the result:

 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F
 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F
 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
 50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F
 60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F
 70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F
 80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F
 90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F
 A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF
 B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF
 C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF
 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF
 E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF
 F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF

The full source code file is available as byte_values03.c in the
online repository. The output is better, but it could still use some
improvement. Because the data dump is sequential, it’s easy to see
patterns and reference rows and columns. However, data won’t always
look so pretty.

EXERCISE 9.2

Improve the code in byte_values03.c in two stages. First, add an
initial column showing the byte values’ offset. Output this value as a 5-
digit hexadecimal number. Then output the row of 16 bytes.

Second, add an extra space to separate the eighth and ninth byte
columns. This space makes the rows and columns more readable.

The output from my solution, byte_values04.c, is shown here:

00000 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
00010 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
00020 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F
00030 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F

00040 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
00050 50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F
00060 60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F
00070 70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F
00080 80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F
00090 90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F
000A0 A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF
000B0 B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF
000C0 C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF
000D0 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF
000E0 E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF
000F0 F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF

The hex display reads better after you’ve completed exercise 9.2.

A final improvement is to add a third ASCII column after the byte
values. This additional information cross-references the hex bytes of
displayable ASCII text, providing a handy way for humans to quickly
scan the dump for relevant information.

The ordeal of adding an ASCII column to the output is complicated due
to stream output. Each row must be processed sequentially: 16 bytes
are output as hex values, and then the same bytes are output as
printable ASCII characters. To resolve this issue, I concocted the
line_out() function, which is found in the source code file
byte_values05.c, available in the online repository.

The line_out() function features three arguments, as shown in the next
listing: an offset representing a byte count, the length of the data
chunk, and the data itself as an unsigned char pointer. Most of the
code is yanked from the earlier byte_values04.c source code,
though variable a tracks progress in the for loops, and is used with the
data pointer to fetch specific byte values: *(data+a). This function
outputs a single row of the dump, so it’s called from the main()
function to output all the data.

Listing 9.4 The line_out() function

void line_out(int offset, int length, unsigned char *data)
{
 int a;

 printf("%05X ",offset); ❶

 for(a=0; a<length; a++) ❷
 {

 printf(" %02X",*(data+a)); ❸

 if((a+1)%8==0) ❹
 putchar(' ');
 }

 putchar(' '); ❺

 for(a=0; a<length; a++) ❻
 {

 if(*(data+a)>=' ' && *(data+a)<='~') ❼

 putchar(*(data+a)); ❽
 else

 putchar(' '); ❾
 }

 putchar('\n');
}

❶ Outputs the offset value

❷ The first loop outputs the hex values.

❸ The hex value calculation is based on the start of the data plus the looping value.

❹ After the eighth hex byte output, adds an extra space for readability

❺ Adds another space after the hex columns

❻ The second loop outputs the ASCII values—if any.

❼ Checks the printable character range

❽ Outputs a printable character

❾ Otherwise, outputs a space

The line_out() function isn’t perfect, which I discuss in a later section,
but it works for now. Here is some sample output:

00000 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
00010 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
00020 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F !"#$%&'()*+,-./
00030 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F 0123456789:;<=>?
00040 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F @ABCDEFGHIJKLMNO
00050 50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F PQRSTUVWXYZ[\]^_
00060 60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F `abcdefghijklmno
00070 70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F pqrstuvwxyz{|}~
00080 80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F
00090 90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F
000A0 A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF
000B0 B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF
000C0 C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF
000D0 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF
000E0 E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF
000F0 F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF

The ASCII column appears on the far right, reflecting the printable
character values from the hex bytes shown in the center columns.
Nonprintable characters appear as spaces.

EXERCISE 9.3

Sadly, the sample output from the byte_values series of programs is
predictable—a swath of 256-byte values from 0x00 through 0xFF. Why
not spice things up a bit and repopulate the data[] buffer with
random values?

Modify the source code for byte_values05.c into a new source code
file, byte_ values 06.c. Have the main() function fill the data[]
array with 256 random values, each in the range of 0 through 255. Run
the program a few times to confirm that the program properly
interprets the hexadecimal and ASCII values of the bytes stored.

9.2 Dump that file!

A dump utility is designed to peer into a file’s data. Well, a file dump
utility. This detail is something that the operating system doesn’t
supply at a glance. No, you can tell a file’s name, size, and date from a
directory listing. The file type is based on the filename extension, so it
could be misleading. No, the only way to peer into a file and examine
its brooding data is to dump.

The Linux hexdump utility performs the file dumping task quite well.
So, this chapter is over.

Seriously, using the utility doesn’t help you learn how to write your
own file utilities, customized the way you like. I call this new utility
dumpfile. It works like hexdump, but it works the way I like it to.

9.2.1 Reading file data

A dumpfile utility could be written as a filter, just like Linux’s hexdump.
As a filter, hexdump chews through all input whether it originates from
a file or is the output from some program. If you’re interested in such
a task, review chapter 4 for information on filters in the Linux
environment. You can adapt the dumpfile code presented in this
chapter as a filter, though I prefer that dumpfile work as a traditional
command-line utility.

Utilities that read data from a file use two approaches. The first is to
specify the filename at the command prompt—usually, as the first (and
often only) argument. The second way is to prompt for a filename after
the utility starts, or to prompt for the filename if it’s missing as a
command-line argument. For now, I assume that the filename
argument is supplied as a command-line argument. Therefore, the
utility must check for such an argument. This confirmation requires
that the main() function specify and use its arguments:

int main(int argc, char *argv[])

The value of argc is always at least 1, which is the program’s
filename. If the user types any arguments, the value of argc is
greater than 1. The program first confirms that an argument is
present. If not, a warning message is sent to the standard error device
(stderr) and the program terminates:

if(argc<2)
{
 fprintf(stderr,"Format: dumpfile filename\n");
 exit(1);
}

The exit() function requires that the stdlib.h header file be included.
Otherwise, you could use return(1) to exit the main() function at
this point in the code. I prefer exit() in that it can be used in any
function to terminate a program, plus it’s tied into other functions such
as atexit() or on_exit(), which gives using exit() a strategic advantage
over the return keyword. Also, it’s shorter to type.

After the argument count is confirmed, the string held in argv[1] is
used in the fopen() function to read the file’s data. This step not only
opens the file but also, upon success, determines whether the file is
present. I use the char pointer filename to reference the string in
argv[1], which aids readability:

filename = argv[1];
fp = fopen(filename,"r");
if(fp==NULL)
{
 fprintf(stderr,"Unable to open file '%s'\n",filename);
 exit(1);
}

My first choice for processing a file’s data was to use the fgets()
function to read in 16 bytes at a time; 16 is the number of hex bytes in
a row of output. But if I want to use my existing line_out() function as
is, I can’t have the 16th byte in the data be the null character. This
byte is what the fgets() function adds to the buffer it reads, unless a
newline is encountered first.

My second choice was to use fread(). Where fgets() is a string-reading
function, fread() consumes data in a given chunk size. It could easily
fill a 16-byte buffer with raw data, which is what I want. Even so, I
opted instead to use the fgetc() function, which reads one character a
time. Set in a while loop, this function gobbles characters, adding them
to a 16-byte buffer and handling the EOF condition when it’s
encountered.

The following listing shows the core of the main() function from the
source code file dumpfile01.c. The while loop repeats until the end
of file (EOF) is found for FILE pointer fp. Byte value ch is fetched from
the file and immediately tested for the EOF marker. After the EOF is
detected, the value of variable index is tested against zero, meaning
the buffer still has data to print. If so, the line_out() function is called.
Otherwise, the file still has data to read, and character ch is stored in
the buffer. Once the buffer is full (index==length), the line_out()

function is called. The full code can be found in the online repository as
dumpfile01.c.

Listing 9.5 The character-reading loop from dumpfile01.c

while(!feof(fp)) ❶
{

 ch = fgetc(fp); ❷

 if(ch==EOF) ❸
 {

 if(index != 0) ❹

 line_out(offset,index,buffer); ❺

 break; ❻
 }

 buffer[index] = ch; ❼

 index++; ❽

 if(index==length) ❾
 {

 line_out(offset,length,buffer); ❿

 offset+=length; ⓫

 index = 0; ⓬
 }
}

❶ Loops until the end of file is encountered

❷ Fetches a character

❸ Immediately tests for the end of file

❹ If the index is zero, the buffer is empty; otherwise . . .

❺ . . . it outputs the final line of the hex dump.

❻ Terminates the loop

❼ Stores the character

❽ Increments the index into the buffer

❾ If the buffer is full, outputs a row of the hex dump

❿ Outputs the row

⓫ Adjusts the offset

⓬ Resets the index to start reading the next length (16) bytes

After reading all bytes from the file, and the while loop has terminated,
the file is closed and the program finishes.

I’ve created a test data file to read, bytes.dat. It’s available in the
online repository along with all this chapter’s source code files. This file
contains sequential byte values from 0x00 through 0xFF, which I used

to test and debug the program created from the dumpfile01.c
source code file. Here is some sample output:

00000 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
00010 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
00020 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F !"#$%&'()*+,-./
00030 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F 0123456789:;<=>?
00040 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F @ABCDEFGHIJKLMNO
00050 50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F PQRSTUVWXYZ[\]^_
00060 60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F `abcdefghijklmno
00070 70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F pqrstuvwxyz{|}~
00080 80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F
00090 90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F
000A0 A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF
000B0 B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF
000C0 C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF
000D0 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF
000E0 E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF
000F0 F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF

9.2.2 Fixing uneven output

Only a few files in the digital realm have sizes of a value evenly divided
by 16. For these files, the dumpfile program works perfectly. True, the
program can handle reading bytes from any file size, but when the file
size isn’t exactly divisible by 16, it has an ugly effect on the output.

Here you see the tail end of the dumpfile utility’s output applied to the
text of Shakespeare’s 18th Sonnet:

....
00230 72 65 61 74 68 65 20 6F 72 20 65 79 65 73 20 63 reathe or eyes c
00240 61 6E 20 73 65 65 2C 0A 53 6F 20 6C 6F 6E 67 20 an see, So long
00250 6C 69 76 65 73 20 74 68 69 73 2C 20 61 6E 64 20 lives this, and
00260 74 68 69 73 20 67 69 76 65 73 20 6C 69 66 65 20 this gives life
00270 74 6F 20 74 68 65 65 2E 0A to thee.

At offset 0x00270 (the last line), you see the file’s final byte, 0A,
immediately followed by the line’s ASCII column. The text “to thee” is
several spaces to the left of where it should line up—if the file ended
exactly at a 16-byte boundary.

To resolve this problem, the line_out() function must be modified. It
must know when a line of output doesn’t match the default output

length of 16 bytes. Speaking of which, in all the code presented so far,
the output width is consistently 16 bytes. This specifies this value as a
constant in the main() function:

const int length = 16;

Defined here, the constant’s value is seen only inside the main()
function. Because this value is also now relevant to the line_out()
functions, I’ve reestablished it as a defined constant. The following
preprocessor directive creates it:

#define SIZE 16

This change is found in the updated source code file, dumpfile02.c.

In the next listing, you see how defined constant SIZE is used in the
line_out() function to help test when the final line of output is shorter
than 16 bytes. This change requires the addition of an if statement
between the two existing for loops. The if decision helps to balance out
the remainder of the last row of output so that the ASCII column lines
up.

Listing 9.6 Updating the line_out() function to account for a short, final line

if(length<SIZE) ❶
{

 for(; a<SIZE; a++) ❷
 {

 printf(" "); ❸

 if((a+1)%8==0) ❹
 putchar(' ');
 }
}

❶ If the row has fewer than SIZE (16) bytes . . .

❷ Continues the loop using variable a

❸ Outputs three spaces

❹ Adds an extra space after the 8th and 16th bytes

The for loop (refer to listing 9.6) lacks an initializing condition, as it
just continues with the current value of variable a as it left the
preceding loop. The loop outputs a set of three spaces to balance out
any missing hex byte values. The if((a+1)%8==0) test accounts
for the extra space added after every eight bytes, which separates the
two hex columns.

The full source code is available in the repository as dumpfile02.c.
Here is the output using the same file used earlier, but improved now
over the first version of the code:

...
00230 72 65 61 74 68 65 20 6F 72 20 65 79 65 73 20 63 reathe or eyes c
00240 61 6E 20 73 65 65 2C 0A 53 6F 20 6C 6F 6E 67 20 an see, So long
00250 6C 69 76 65 73 20 74 68 69 73 2C 20 61 6E 64 20 lives this, and
00260 74 68 69 73 20 67 69 76 65 73 20 6C 69 66 65 20 this gives life
00270 74 6F 20 74 68 65 65 2E 0A to thee.

EXERCISE 9.4

Is programming ever done? To further update the source code for
dumpfile02.c, modify the main() function so that if the filename
argument is missing, the program prompts for it.

It’s important that your code identify when the user just presses Enter
or otherwise dismisses the filename prompt. There’s no point in the
program attempting to open a NULL string filename. Beyond this
requirement, you don’t need to otherwise validate the filename,
because the fopen() statement does so automatically. My solution is
available in the online repository as dumpfile03.c.

9.3 Command-line options

What can you add to the dumpfile program? For starters, how about
abbreviated output, showing only the hex bytes? Or for you old timers,
how about adding an option to display the bytes in octal, base 8? You
can probably think of more features to add, perhaps color-coded

output? Obviously, such complications would require a Help system to
provide some documentation. Oh, I could go on!

As a command-line utility, options and features are controlled by
switches—additional command-line arguments that activate,
deactivate, or specify quantities and limits. In Linux, these switches
have a format: -a, where a letter is preceded by a dash or hyphen.
(Windows uses the slash character (/), which was a dumb decision
Microsoft made years ago, before Bill Gates was eligible to vote.)

In Linux, you can specify multiple switches:

dumpfile -a -b -c

These can be bunched together:

dumpfile -abc

And some switches can have options:

dumpfile -q:5

You could toil with tests and loops to examine the switches. Or you can
take advantage of a handy C library feature: the getopt() function. It
helps your program process switches so that you don’t have to write
the code.

9.3.1 Using the getopt() function

The getopt() function helps your code process command-line switches.
I’m certain it’s used by just about every Linux command-line utility in
existence, including several from the multiverse. Here is its man page
format:

int getopt(int argc, char * const argv[], const char *optstring);

The first two arguments are identical to the main() function’s argc and
*argv[] arguments. The final argument, optstring, is a list of valid
switch characters. For example:

getopt(argc,argv,"abc");

Valid switches here are -a, -b, and -c. The function is called
repeatedly, each time returning the ASCII code for a valid character
(an int value), the character '?' for an unknown option, or -1 when
the function has exhausted all command-line options.

The companion getopt_long() function handles full word switches,
though for this chapter I explore only the getopt() function to handle
the traditional, single-character switches.

Both getopt() and getopt_long() require that the unistd.h header file
be included in your code.

Listing 9.7 shows code I used as a test before adding the getopt()
function to my dumpfile code. Global variable opterr is set to zero to
ensure that getopt() doesn’t output its own error messages. The
getopt() function itself resides inside a while loop’s condition. The
function’s return value is compared with -1, meaning that all
command-line arguments have been examined, which stops the loop.
Otherwise, the value returned in variable r is used in a switch-case
structure to indicate which option is set. This setup is how the getopt()
function is typically implemented.

Listing 9.7 Source code for options01.c

#include <stdio.h>

#include <unistd.h> ❶

int main(int argc, char *argv[])
{
 int r;

 opterr = 0; ❷

 while((r=getopt(argc,argv,"abc")) != -1) ❸
 {

 switch(r) ❹
 {

 case 'a': ❺
 puts("alfa option set");
 break;
 case 'b':
 puts("bravo option set");
 break;
 case 'c':
 puts("charlie option set");
 break;

 case '?': ❻
 printf("Switch '%c' is invalid\n",optopt);
 break;

 default: ❼
 puts("Unknown option");
 }
 }

 return(0);
}

❶ The unistd.h header file is required for the getopt() function.

❷ Suppresses error output from getopt()

❸ Scans the arguments, repeating the loop until every argument is processed

❹ Examines the character returned

❺ The case statements examine each valid option letter.

❻ A question mark is returned for unknown/invalid options.

❼ I doubt the default condition is ever met.

The fun comes when testing the program built from the options01.c
source code. First, try no options:

$./options

No output is generated. Good.

All options are specified here:

$./options -a -b -c
alfa option set
bravo option set
charlie option set

And they can be specified in any order:

$./options -c -a -b
charlie option set
alfa option set
bravo option set

Or a single pair, but bunched together:

$./options -cb
charlie option set
bravo option set

The getopt() function allows you all the flexibility to read options in this
manner without having to code the complex comparisons and
processing yourself. Of course, the code so far does nothing with the
options. The next step is to add variables that represent on-off
switches for what the options attempt to accomplish.

In my update from options01.c to options02.c, I add three int
variables: alfa, bravo, and charlie. Each is initialized before the
getopt() statement in the while loop:

alfa = 0;
bravo = 0;
charlie = 0;

In the switch-case structure, remove the puts() statements and
replace them with statements that set the variables value to 1 (TRUE)
for active:

alfa = 1;

Next, after the while loop, add a series of if statements to output the
results:

if(alfa) puts("alfa option set");
if(bravo) puts("bravo option set");
if(charlie) puts("charlie option set");
if(alfa+bravo+charlie==0) puts("No options set");

The final if statement displays a message when no options are set.

The source code for options02.c is found in this book’s online
repository. Here are some sample runs:

$./options
No options set

Because the switches can be examined in this new code, a lack of
options is easily identified.

The output for setting all options is the same as with the first version
of the code:

$./options -a -b -c
alfa option set
bravo option set
charlie option set

The remaining variations for the switches have the same output as the
original program. The difference is that the program is now aware of
the settings and can examine the variables to perform whatever magic
is requested.

9.3.2 Updating the dumpfile program code

To add command-line options to a utility, you must know what the
options do. Then you use a function like getopt() to scan for and set
the options. Finally, the options must be implemented in code.

For the dumpfile program, here are options I’m presenting:

-a for abbreviated output

-o for octal output

-h for help

These switches can be processed as shown earlier with the options
series of source code files. With the dumpfile program, however, the
first argument is a filename. In fact, it must be a filename: to help
process command-line switches, the program can no longer prompt for

a filename if one is missing (if you completed exercise 9.4). Further,
the filename must always be the first argument, argv[1].
(Technically, it’s the second argument, because the program filename
is first or argv[0].)

The first step to adding and processing arguments is to modify the
main() function. If a prompt for a missing filename was added in
exercise 9.4, it’s now removed. The code is honed to assume that the
first argument is a filename. The following statements are added
before the while loop in the main() function:

if(argc<2)
{
 puts("Format: dumpfile filename [options]");
 exit(1);
}

If the program survives this if test, the next new chunk of code checks
to see whether the -h “help” switch is specified first. If not, the
program may attempt to open the file -h. So, a quick comparison is
made for -h as the first argument. If found, the help() function is
called:

filename = argv[1];

if(strcmp(filename,"-h")==0)
 help();

Because the program assumes the first argument is a filename, this
step is necessary even if you use the getopt() function elsewhere in
the code to look for the -h switch. In fact, this type of comparison is
how I would test for switches if the getopt() function were unavailable.
If the -h switch is the first argument, the help() function is called and
helpful text is output. The program ends. Otherwise, the program can
continue testing options.

To process the rest of the switches, I use a single int variable
options. This variable is declared externally—a global variable, which

gives all functions access to its value:

int options;

As with the options series of programs, in the updated code for
dumpfile each of the three valid switches—-a, -o, and -h—are tested
for in a while loop, shown in the following listing. I use only one
variable, the external integer options, to track the settings. It’s
initialized to zero, along with other variables used elsewhere in the
main() function. For two of the switches, a macro alters the value of
variable options: set_abbr() for -a and set_oct() for -o. If the help
switch is specified, the help() function is called where text is output
and the program terminates.

Listing 9.8 The while loop inside the main() function, in dumpfile04.c

offset = index = options = 0; ❶

while((r=getopt(argc,argv,"aosh")) != -1) ❷
{
 switch(r)
 {
 case 'a':

 set_abbr(); ❸
 break;
 case 'o':

 set_oct(); ❹
 break;
 case 'h':

 help(); ❺
 case '?':
 printf("Switch '%c' is invalid\n",optopt);
 break;
 default:
 puts("Unknown option");
 }
}

❶ Variables offset and index are used elsewhere in the main() function.

❷ Valid switches are a, o, s, and h.

❸ For the -a switch, the set_abbr() macro modifies variable options.

❹ For the -o switch, the set_oct() macro modifies variable options.

❺ For -h, the help() function is called and the program quits.

By making variable options external, the line_out() function need not
be modified. Otherwise, I’d have to add another argument to the list,
one to accept the variable options to examine the command-line
switches. Having a single variable options also avoids adding even
more arguments to the line_out() function. Its declaration would
eventually become a mess. No, this situation is one of those rare times
a global variable is an effective solution to a problem.

The macros set_abbr() and set_oct() allow the code to modify variable
options by setting specific bits. Each of the set macros has a
companion test macro that can be used in the line_out() function. The
test macro returns TRUE (1) when the option is set, which allows the
macro to be used as an if condition to activate a feature.

The next listing shows the macros as they’re defined at the start of the
source code file. First, the options variable is declared, and then
binary values are assigned for the options, ABBR and OCT. Finally, the
set and test macros are defined, using bitwise logic to set and evaluate
the bits in variable options.

Listing 9.9 Creating macros to modify and test variable options

int options; ❶

#define SIZE 16 ❷

#define ABBR 1 ❸

#define OCT 2 ❹

#define set_abbr() options|=ABBR ❺

#define test_abbr() ((options&ABBR)==ABBR) ❻

#define set_oct() options|=OCT ❼

#define test_oct() ((options&OCT)==OCT) ❽

❶ Declares the external variable before it’s used

❷ Size value is used elsewhere in the code, 16 bytes per line.

❸ Abbreviation status is bit 1.

❹ Octal output status is bit 2.

❺ Uses the bitwise logical OR to set bit 1 (ABBR) in variable options

❻ Uses the bitwise logical AND to test bit 1 (ABBR) in variable options

❼ Uses the bitwise logical OR to set bit 2 (OCT) in variable options

❽ Uses the bitwise logical AND to test bit 2 (OCT) in variable options

The defined constants ABBR and OCT represent bit positions in the
variable options that don’t overlap. Each bit can be set or examined
without changing the other bits. This approach allows for more options
to be added in the same manner, on up to the full bit width of an int
variable.

The macros add to readability, but more important, by creating a
macro, I make updating the code easier. For example, changing an
option is done in one location as opposed to fishing around the code for
everywhere it’s referenced.

The full code for the modified dumpfile program is available in the
online repository as dumpfile04.c. The only item I haven’t discussed
is the help() function. It’s shown here. The next few sections cover the
code required to implement the -a and -o switches.

Listing 9.10 The help() function from dumpfile04.c

void help(void)
{
 puts("dumpfile - output a file's raw data");
 puts("Format: dumpfile filename [options]");
 puts("Options:");
 puts("-a abbreviated output ");
 puts("-o output octal instead of hex");
 puts("-h display this text");
 exit(1);
}

9.3.3 Setting abbreviated output

The dumpfile program’s current output is good for nerds who want to
examine bytes in files. It shows an offset column, hex bytes, and then
character representation of ASCII codes. This presentation is what I
prefer, though at times all that’s needed is just the byte dump. To
accomplish this goal, users can specify the -a switch for abbreviated
program output.

The mechanics behind the -a switch are already present in the
dumpfile04.c source code. All that’s required is implementing the
on-off portions of the code: with abbreviated output active, some items
in the line_out() function are suppressed. For these items, an if
statement is added with the test_abbr() macro as its condition. The
result is a toggle that activates portions of the output only when the -
a switch isn’t specified.

Modifications must be made at three points in the line_out() function.
The first is for the initial column, which outputs the offset. The printf()
statement is executed only when the test_abbr() macro returns zero.
The not operator (!) is used to negate the macro:

if(!test_abbr())
{
 printf("%05X ",offset);
}

If the -a switch is specified, the printf() statement is skipped.
Otherwise, for normal output, it’s executed.

Next, in the for loop that outputs the hex bytes, the existing code adds
an extra space for readability:

if((a+1)%8==0)
 putchar(' ');

This space isn’t needed for a plain hex dump. Again, the test_abbr()
macro is added to the if condition to disable the space output when the
-a switch is specified. Here is the modification:

if((a+1)%8==0 && !test_abbr())
 putchar(' ');

Another space is added when the line length is less than the LENGTH
constant. This statement (at line 37 in the dumpfile05.c source
code file) need not be modified because the ASCII column is also
suppressed.

Finally, the last part of the line_out() function to be modified is the for
loop that outputs the ASCII column. This chunk of code is enclosed in
an if test like the first column:

if(!test_abbr())
{
 putchar(' ');
 for(a=0; a<length; a++)
 {
 if(*(data+a)>=' ' && *(data+a)<='~')
 putchar(*(data+a));
 else
 putchar(' ');
 }
}

Each time the test_abbr() macro is used, it’s prefixed with the not (!)
operator. This may cause you to think about rewriting the macro so
that its evaluation is reversed. You could do so, though I chose to be
consistent with both macros in that they return 1 when the switch is
active.

The full source code for adding the -a switch is available in the online
repository as dumpfile05.c. Here is a sample run on the
bytes.dat file, which contains sequential value 0 through 255:

$./dumpfile bytes.dat -a
 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F
 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F
 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
 50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F
 60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F
 70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F
 80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F
 90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F
 A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF
 B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF
 C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF
 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF
 E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF
 F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF

9.3.4 Activating octal output

Older programmers have more of an attraction to octal than younger
coders. I’m on the cusp, at the age where octal was introduced to me
as a young coder, but we never got a chance to date.

Octal is the base-8 counting system, which fits in nicely with three bits
of data. Before the microcomputer era, this counting base was
commonly used on mainframes and in programming. You still see
vestiges of octal, primarily in file permission bits in a Linux directory
listing. The octal counting base is shown in table 9.3.

Table 9.3 Octal, decimal, and hexadecimal values

Octal Decimal Hex Binary Octal Decimal Hex Binary

0 0 0 0000 10 8 8 1000

1 1 1 0001 11 9 9 1001

2 2 2 0010 12 10 A 1010

3 3 3 0011 13 11 B 1011

4 4 4 0100 14 12 C 1100

5 5 5 0101 15 13 D 1101

6 6 6 0110 16 14 E 1110

7 7 7 0111 17 15 F 1111

Like many programming languages, C deftly handles octal values. To
specify octal, you use the zero prefix: 01 is octal 1, 010 is octal 10
(decimal 8), and so on. Your source code editor may be wise enough to
pick up on octal values and highlight them accordingly.

The printf() and scanf() placeholder for octal values is %o. Like other
placeholders, it features width values and zero-padding.

For the sake of the old timers, I added an octal output switch to the
dumpfile program. This switch required several updates to the code,
for not only octal output but also spacing and alignment in the
program’s output.

Three changes are required to activate the -o switch, updating the
dumpfile05.c source code file to its next iteration, dumpfile06.c.

Each of these changes is found in the line_out() function. The
test_oct() macro is used as an if condition, which returns TRUE when
the -o switch has been specified.

When the octal switch is active, the first column needs to output octal
values instead of hex. This decision is in addition to whether the
column is output when test_abbr() macro is true (or false). An if-else
structure handles the differing output:

if(!test_abbr())
{
 if(test_oct())
 printf("%05o ",offset);
 else
 printf("%05X ",offset);
}

The %05o placeholder outputs the value of variable offset as an octal
number five digits wide with zeros padded on the left.

The next change takes place in the fo loop that outputs the bytes. It’s
pretty much the same type of decision: when the test_oct() macro
returns TRUE, octal values are output instead of decimal:

if(test_oct())
 printf(" %03o",*(data+a));
else
 printf(" %02X",*(data+a));

The placeholder %03o outputs an octal value three digits wide with
zeros padded on the left. The effect on the output is that each line of
bytes is now wider than a typical 80-column screen. Still, if the user
wants octal output, the program provides.

The final change is made when the last line of output is shorter than
16 bytes. Because the octal values are output three characters wide
instead of two, four spaces are needed for each missing byte to line up
the ASCII column:

if(test_oct())
 printf(" ");

else
 printf(" ");

These changes are included in the source code file dumpfile06.c,
available in this book’s online repository. Here is output from the
dumpfile program on the bytes.dat file with both the -a and -o
switches specified:

 000 001 002 003 004 005 006 007 010 011 012 013 014 015 016 017
 020 021 022 023 024 025 026 027 030 031 032 033 034 035 036 037
 040 041 042 043 044 045 046 047 050 051 052 053 054 055 056 057
 060 061 062 063 064 065 066 067 070 071 072 073 074 075 076 077
 100 101 102 103 104 105 106 107 110 111 112 113 114 115 116 117
 120 121 122 123 124 125 126 127 130 131 132 133 134 135 136 137
 140 141 142 143 144 145 146 147 150 151 152 153 154 155 156 157
 160 161 162 163 164 165 166 167 170 171 172 173 174 175 176 177
 200 201 202 203 204 205 206 207 210 211 212 213 214 215 216 217
 220 221 222 223 224 225 226 227 230 231 232 233 234 235 236 237
 240 241 242 243 244 245 246 247 250 251 252 253 254 255 256 257
 260 261 262 263 264 265 266 267 270 271 272 273 274 275 276 277
 300 301 302 303 304 305 306 307 310 311 312 313 314 315 316 317
 320 321 322 323 324 325 326 327 330 331 332 333 334 335 336 337
 340 341 342 343 344 345 346 347 350 351 352 353 354 355 356 357
 360 361 362 363 364 365 366 367 370 371 372 373 374 375 376 377

Output with the -o switch alone is too wide to show as text. Figure 9.1
illustrates how the output looks in a terminal window with the
dimensions 100 columns by 24 rows.

Figure 9.1 Output from the dumpfile program with the -o switch is kinda wide.

EXERCISE 9.5

How about adding one more switch to the dumpfile program? The -v
switch is commonly used to output the program’s version number. I
would recommend setting these values as defined constants: separate
major and minor version numbers, or a complete version number
string.

Add both the -v switch as well as the code (the version() function) to
output the version number. The program can quit after performing this
task. And remember that some users may use the -v switch as the

program’s only argument. My solution to this exercise is found in the
online repository as dumpfile07.c.

10 Directory tree

Of all the programming tasks, I’m embarrassed to admit that
I enjoy coding file utilities the most. The casual user is
unaware of the mountain of information about files provided
by the operating system. It’s highly detailed low-hanging
fruit, eager for plucking. Plus, exploring files and directories
opens your understanding of how computer storage works.
Exploring this field may inspire you to write your own
interesting file utilities. If it doesn’t, you can keep reading
this chapter—your introduction to filesystems and storage.

The goal here is to create a directory tree program. The
output shows subdirectories as they sit in the hierarchical
filesystem. In addition to being exposed to the word
hierarchical (which I can amazingly both spell and type), in
this chapter you learn how to:

Examine information about a file

Decipher file modes and permissions

Read a directory entry

Use recursion to explore the directory structure

Extract a directory name from a full pathname

Output a directory tree
Avoid confusing the word hierarchical with hieroglyphical

Before diving into the details, be aware that GUI
nomenclature prefers the term folder over directory. As a C

programmer, you must use the term directory, not folder. All
C functions that deal with files and directories use directory
or contain the abbreviation “dir.” Don’t wimp out and use the
term folder.

The point of the directory tree utility is to output a map of
the directory structure. The map details which directories
are parents and children of each other. Unlike years ago,
today’s directory structures are busy with lots of
organization. Users are more attentive when it comes to
saving files. Programs are geared toward this type of
organization and provide hints to help users employ the
subdirectory concept.

Even if a directory map seems trivial, the process of
exploring the directory tree lends itself well to other handy
disk utilities. For example, chapter 11 covers a file-finding
utility, which relies heavily upon the information presented in
this chapter to make the utility truly useful.

10.1 The filesystem

At the core of all media storage lies the filesystem. The
filesystem describes the way data is stored on media, how
files are accessed, and various nerdy tidbits about the files
themselves.

The only time most users deal with the filesystem concept is
when formatting media. Choosing a filesystem is part of the
formatting process, because it determines how the media is
formatted and which protocols to follow. This step is

necessary for compatibility: not every filesystem is
compatible with every computer operating system.
Therefore, the user is allowed to select a filesystem for the
media’s format to allow for sharing between operating
systems, such as Linux and PC or Macintosh.

The filesystem’s duty is to organize storage. It takes a file’s
data and writes it to one or more locations on the media.
This information is recorded along with other file details,
such as the file’s name, size, dates (created, modified,
accessed), permissions, and so on.

Some of the file details are readily obtainable through
existing utilities or from various C library functions. But most
of the mechanics of the filesystem are geared toward saving,
retrieving, and updating the file’s data lurking on the media.
All this action takes place automatically under the
supervision of the operating system.

The good news for most coders is that it isn’t necessary to
know the minutiae of how files are stored on media. Even if
you go full nerd and understand the subtle differences
between the various filesystems and can tout the benefits of
the High Performance File System (HPFS) at nerd cocktail
parties, the level of media access required to manipulate a
filesystem requires privileges above where typical C
programs operate. Functions are available for exploring a
file’s details. These functions are introduced in the next
section.

Aside from knowing the names and perhaps a few details on
how filesystems work, if you’re curious, you can use

common tools on your computer to see which filesystems
are in use. In a Linux terminal window, use the man fs
command to review details on how Linux uses a filesystem
and the different filesystems available. The
/proc/filesystems directory lists available filesystems
for your Linux installation.

Windows keeps its filesystem information tucked away in the
Disk Management console. To access this window, follow
these steps:

1. Tap the Windows key on the keyboard to open the Start
menu.

2. Type Disk Management.
3. From the list of search results, choose Create and

Format Hard Disk Partitions.

Figure 10.1 shows the Disk Management console from one of
my Windows computers. Available media is presented in the
table, with the File System column listing the filesystems
used; only NTFS is shown in the figure.

Figure 10.1 The Disk Management console reveals the filesystem used

to format media available to the PC.

On the Macintosh, you can use the Disk Utility to browse
available media to learn which filesystem is in use. This app
is found in the Utilities directory: in the Finder, click Go >
Utilities to view the directory and access the Disk Utility app.

If it were easy or necessary to program a filesystem, I’d
explore the topic further. For now, understand that the
filesystem is the host for data stored on media in a
computer. A program such as a directory tree uses the
filesystem, but in C, such a utility doesn’t need to know
details about the filesystem type to do its job.

10.2 File and directory details

To gather directory details at the command prompt, use the
ls command. It’s available in all shells, dating back to the
first, prehistoric version of Unix used by the ancient Greeks,

when the command was known as λσ. The output is a list of
filenames in the current directory:

$ ls
changecwd.c dirtree04.c fileinfo03.c readdir01.c subdir01.c subdir05.c
dirtree01.c extractor.c fileinfo04.c readdir02.c subdir02.c subdir06.c
dirtree02.c fileinfo01.c fileinfo05.c readdir03.c subdir03.c
dirtree03.c fileinfo02.c getcwd.c readdir04.c subdir04.c

For more detail, the -l (long) switch is specified:

$ ls -l
total 68
-rwxrwxrwx 1 dang dang 292 Oct 31 16:26 changecwd.c
-rwxrwxrwx 1 dang dang 1561 Nov 4 21:14 dirtree01.c
-rwxrwxrwx 1 dang dang 1633 Nov 5 10:39 dirtree02.c
...

This output shows details about each file, its permissions,
ownership, size, date, and other trivia you can use to
intimidate your computer illiterate pals. It’s not secret stuff;

the details output by the ls -l command are stored in the
directory like a database. In fact, directories on storage
media are really databases. Their records aren’t specifically
files, but rather inodes.

An inode is not an Apple product. No, it’s a collection of data
that describes a file. Although your C programs can’t readily
access low-level filesystem details, you can easily examine a
file’s inode data. The inode’s name is the same as the file’s
name. But beyond the name, the inode contains oodles of
details about the file.

10.2.1 Gathering file info

To obtain details about a file, as well as to read a directory,
you need to access inode data. The command-line program
that does so is called stat. Here’s some sample output on the
stat program file fileinfo:

 File: fileinfo
 Size: 8464 Blocks: 24 IO Block: 4096 regular file
Device: eh/14d Inode: 11258999068563657 Links: 1
Access: (0777/-rwxrwxrwx) Uid: (1000/ dang) Gid: (1000/ dang)
Access: 2021-10-23 21:11:17.457919300 -0700
Modify: 2021-10-23 21:11:00.071527400 -0700
Change: 2021-10-23 21:11:00.071527400 -0700

These details are stored in the directory database. In fact,
part of the output shows the file’s inode number:
11258999068563657. Of course, the name fileinfo is far
easier to use as a reference.

To read this same information in your C programs, you use
the stat() function. It’s prototyped in the sys/stat.h
header file. Here is the man page format:

int stat(const char *pathname, struct stat *statbuf);

The pathname is a filename or a full pathname. Argument
statbuf is the address of a stat structure. Here’s a typical
stat() function statement, with the filename char pointer
containing the filename, fs as a stat structure, and int
variable r capturing the return value:

r = stat(filename,&fs);

Upon failure, value -1 is returned. Otherwise, 0 is returned
and the stat structure fs is joyously filled with details
about the file—inode data. Table 10.1 lists the common
members of the stat structure, though different filesystems
and operating systems add or change specific members.

Table 10.1 Members in the stat() function’s statbuf structure

Member Data type

(placeholder)

Detail

st_dev dev_t (%lu) ID of the media (device)

containing the file

st_ino ino_t (%lu) Inode number

st_mode mode_t (%u) File type, mode,

permissions

st_nlink nlink_t (%lu) Number of links

st_uid uid_t (%u) Owner’s user ID

st_gid gid_t (%u) Group’s user ID

st_rdev dev_t (%lu) Special file type’s device

ID

st_size off_t (%lu) File size in bytes

st_blksize blksize_t (%lu) Filesystem’s block size

st_blocks blkcnt_t (%lu) File blocks allocated

(512-byte blocks)

st_atime struct timespec Time file last accessed

st_mtime struct timespec Time file last modified

st_ctime struct timespec Time file status last

changed

Most of the stat structure members are integers; I’ve
specified the printf() placeholder type in table 10.1. They’re
all unsigned, though some values are unsigned long. Watch
out for the long unsigned values because the compiler
bemoans using the incorrect placeholder to represent these
values.

The timespec structure is accessed as a time_t pointer. It
contains two members: tv_sec and tv_nsec for seconds

and nanoseconds, respectively. An example of using the
ctime() function to access this structure is shown later.

The following listing shows a sample program,
fileinfo01.c, that outputs file (or inode) details. Each of
the stat structure members is accessed for a file supplied
as a command-line argument. Most of the code consists of
error-checking—for example, to confirm that a filename
argument is supplied and to check on the return status of
the stat() function.

Listing 10.1 Source code for fileinfo01.c

#include <stdio.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <time.h>

int main(int argc, char *argv[]) ❶
{
 char *filename;
 struct stat fs;
 int r;

 if(argc<2) ❷
 {
 fprintf(stderr,"Specify a filename\n");
 exit(1);
 }

 filename = argv[1]; ❸
 printf("Info for file '%s'\n",filename);

 r = stat(filename,&fs); ❹

 if(r==-1) ❺
 {
 fprintf(stderr,"Error reading '%s'\n",filename);
 exit(1);
 }

 printf("Media ID: %lu\n",fs.st_dev); ❻

 printf("Inode #%lu\n",fs.st_ino); ❻

 printf("Type and mode: %u\n",fs.st_mode); ❻

 printf("Hard links = %lu\n",fs.st_nlink); ❻

 printf("Owner ID: %u\n",fs.st_uid); ❻

 printf("Group ID: %u\n",fs.st_gid); ❻

 printf("Device ID: %lu\n",fs.st_rdev); ❻

 printf("File size %lu bytes\n",fs.st_size); ❻

 printf("Block size = %lu\n",fs.st_blksize); ❻

 printf("Allocated blocks = %lu\n",fs.st_blocks); ❻

 printf("Access: %s",ctime(&fs.st_atime)); ❼

 printf("Modification: %s",ctime(&fs.st_mtime)); ❼

 printf("Changed: %s",ctime(&fs.st_ctime)); ❼
 return(0);
}

❶ The filename is supplied as a program argument.

❷ Confirms the first argument

❸ Referring to the argument using char pointer filename aids readability.

❹ Calls the stat() function

❺ Checks for an error

❻ Outputs the members of the stat structure fs

❼ The time structures use the ctime() function to output their values.

The information output by the fileinfo01.c program
mirrors what the command-line stat utility coughs up. Here’s
a sample run on the same file, fileinfo, this code’s
program:

Info for file 'fileinfo'
Media ID: 14
Inode #7318349394555950
Type and mode: 33279
Hard links = 1
Owner ID: 1000
Group ID: 1000
Device ID: 0
File size 8464 bytes
Block size = 4096
Allocated blocks = 24
Access: Tue Oct 26 15:55:10 2021
Modification: Tue Oct 26 15:55:10 2021
Changed: Tue Oct 26 15:55:10 2021

The details are the same as for the stat command’s output
shown earlier in this section. The stat command does look
up the Device ID, Owner ID, and Group ID details, which
your code could do as well. But one curious item is structure
member st_mode, the type and mode value. The value
shown in the output above is 33279. This integer value
contains a lot of details—bit fields—which you see
interpreted in the stat command’s output. Your code can also
examine this value to determine the file type and its
permissions.

10.2.2 Exploring file type and permissions

Examining a file’s (or inode’s) st_mode value is how you
determine whether a file is a regular old file, a directory, or
some other special type of file. Remember that in the Linux
environment, everything is a file. Using the stat() function is
how your code can determine which type of file the inode
represents.

The bit fields in the st_mode member of the stat structure
also describe the file’s permissions. Though you could code a
series of complex bitwise logical operations to ferret out the
specific details contained in the st_mode value’s bits, I
recommend that you use instead the handy macros available
in the sys/stat.h header file.

For example, the S_ISREG() macro returns TRUE for
regular files. To update the fileinfo01.c code to test for
regular files, add the following statements:

printf("Type and mode: %X\n",fs.st_mode);
if(S_ISREG(fs.st_mode))
 printf("%s is a regular file\n",filename);
else
 printf("%s is not a regular file\n",filename);

If the S_ISREG() test on the fs.st_mode variable returns
TRUE, the printf() statement belonging to the if statement
outputs text confirming that the file is regular. The else
condition handles other types of files, such as directories.

In my update to the code, fieinfo02.c (available in the
online archive), I removed all the printf() statements from
the original code. The five statements shown earlier replace
the original printf() statements, because the focus of this
update is to determine file type. Here’s sample output on the
fileinfo02.c source code file itself:

Info for file 'fileinfo02.c'
Type and mode: 81FF
Fileinfo02.c is a regular file

If I instead specify the single dot (.), representing the
current directory, I see this output:

Info for file '.'
Type and mode: 41FF
. is a directory

In the output above, the st_mode value changes as well as
the return value from the S_ISREG() macro; a directory
isn’t a regular file. In fact, you can test for directories
specifically by using the S_ISDIR() macro:

printf("Type and mode: %X\n",fs.st_mode);
if(S_ISREG(fs.st_mode))
 printf("%s is a regular file\n",filename);
else if(S_ISDIR(fs.st_mode))
 printf("%s is a directory\n",filename);
else
 printf("%s is some other type of file\n",filename);

I’ve made these modifications and additions to the code in
fileinfo02.c, with the improvements saved in
fileinfo03.c, available in this book’s online repository.

Further modifications to the code are possible by using the
full slate of file mode macros, listed in table 10.2. These are
the common macros, though your C compiler and operating
system may offer more. Use these macros to identify files by
their type.

Table 10.2 Macros defined in sys/stat.h to help determine file

type

Macro True for this type of file

S_ISBLK() Block special, such as mass storage in the /dev directory

S_ISCHR() Character special, such as a pipe or the /dev/null device

S_ISDIR() Directories

S_ISFIFO() A FIFO (named pipe) or socket

S_ISREG() Regular files

S_ISLNK() Symbolic link

S_ISSOCK() Socket

File type details aren’t the only information contained in the
st_mode member of the stat structure. This value also
reveals the file’s permissions. File permissions refer to

access bits that determine who-can-do-what to a file. Three
access bits, called an octet, are available:

Read (r)

Write (w)
Execute (x)

Read permission means that the file is accessed read-only:
the file’s data can be read but not modified. Write
permission allows the file to be read and written to. Execute
permission is set for program files, such as your C programs
(set automatically by the compiler or linker), shell scripts
(set manually), and directories. This is all standard Linux
stuff, so if you desire more information, hunt down a grim,
poorly written book on Linux for specifics.

In Linux, the chmod command sets and resets file
permissions. These permissions can be seen in the long
listing of a file when using the ls command with the -l (little
L) switch:

$ ls -l fileinfo
-rwxrwxrwx 1 dang dang 8464 Oct 26 15:55 fileinfo

The first chunk of info, -rwxrwxrwx, indicates the file type
and permissions, which are detailed in figure 10.2. Next is
the number of hard links (1), the owner (dang), and the
group (dang). The value 8,464 is the file size in bytes, and
then comes the date and time stamp, and finally the
filename.

Figure 10.2 Deciphering file permission bits in a long directory listing

Three sets of file permissions octets are used for a file.
These sets are based on user classification:

Owner

Group
Other

You are the owner of the files you create. As a user on the
computer, you are also a member of a group. Use the id
command to view your username and ID number, as well as
the groups you belong to (names and IDs). View the
/etc/group file to see the full list of groups on the system.

File owners grant themselves full access to their files.
Setting group permissions is one way to grant access to a
bunch of system users at once. The third field, other, applies
to anyone who is not the owner or in the named group.

In the long directory listing, a file’s owner and group appear
as shown earlier. This value is interpreted from the st_mode
member of the file’s stat structure. As with obtaining the
file’s type, you can use defined constants and macros
available in the sys/stat.h header file to test for the
permissions for each user classification.

I count nine permission-defined constants available in
sys/stat.h, which accounts for each permission octet
(three) and the three permission types: read, write, and
execute. These are shown in table 10.3.

Table 10.3 Defined constants used for permissions, available from the

sys/stat.h header file

Defined

constant

Permission octet

S_IRUSR Owner read permission

S_IWUSR Owner write permission

S_IXUSR Owner execute permission

S_IRGRP Group read permission

S_IWGRP Group write permission

S_IXGRP Group execute permission

S_IROTH Other read permission

S_IWOTH Other write permission

S_IXOTH Other execute permission

The good news is that these defined constants follow a
naming pattern: each defined constant starts with S_I. The
I is followed by R, W, or X for read, write, or execute,
respectively. This letter is followed by USR, GRP, OTH for
Owner (user), Group, and Other. This naming convention is
summarized in figure 10.3.

Figure 10.3 The naming convention used for permission defined

constants in sys/stat.h

For example, if you want to test the read permission for a
group user, you use the S_IRGRP defined constant: S_I
plus R for read and GRP for group. This defined constant is
used in an if test with a bitwise AND operator to test the
permission bit on the st_mode member:

 If(fs.st_mode & S_IRGRP)

The value in fs_st_mode (the file’s mode, including type
and permissions) is tested against the bit in the S_IRGRP
defined constant. If the test is true, meaning the bit is set,
the file has read-only permissions set for the “other” group.

Listing 10.2 puts the testing macros and defined constants
to work for a file supplied as a command-line argument. This
update to the fileinfo series of programs outputs the file type
and permissions for the named file. An if else-if else
structure handles the different file types as listed in table
10.2. Three sets of if tests output permissions for the three
different groups. You see all the macros and defined
constants discussed in this section used in the code. The
code appears lengthy, but it contains a lot of copied and
pasted information.

Listing 10.2 Source code for fileinfo04.c

#include <stdio.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <time.h>

int main(int argc, char *argv[])
{
 char *filename;

 struct stat fs;
 int r;

 if(argc<2)
 {
 fprintf(stderr,"Specify a filename\n");
 exit(1);
 }

 filename = argv[1];
 r = stat(filename,&fs);
 if(r==-1)
 {
 fprintf(stderr,"Error reading '%s'\n",filename);
 exit(1);
 }

 ❶
 printf("File '%s' is a ",filename);

 if(S_ISBLK(fs.st_mode)) ❷
 printf("block special\n");
 else if(S_ISCHR(fs.st_mode))
 printf("character special\n");
 else if(S_ISDIR(fs.st_mode))
 printf("directory\n");
 else if(S_ISFIFO(fs.st_mode))
 printf("named pipe or socket\n");
 else if(S_ISREG(fs.st_mode))
 printf("regular file\n");
 else if(S_ISLNK(fs.st_mode))
 printf("symbolic link\n");
 else if(S_ISSOCK(fs.st_mode))
 printf("socket\n");
 else
 printf("type unknown\n");

 printf("Owner permissions: "); ❸
 if(fs.st_mode & S_IRUSR)
 printf("read ");
 if(fs.st_mode & S_IWUSR)
 printf("write ");
 if(fs.st_mode & S_IXUSR)
 printf("execute");
 putchar('\n');

 printf("Group permissions: "); ❹
 if(fs.st_mode & S_IRGRP)
 printf("read ");
 if(fs.st_mode & S_IWGRP)
 printf("write ");
 if(fs.st_mode & S_IXGRP)

 printf("execute");
 putchar('\n');

 printf("Other permissions: "); ❺
 if(fs.st_mode & S_IROTH)
 printf("read ");
 if(fs.st_mode & S_IWOTH)
 printf("write ");
 if(fs.st_mode & S_IXOTH)
 printf("execute");
 putchar('\n');

 return(0);
}

❶ New stuff starts here.

❷ Determines the file type, a long if-else structure

❸ Tests owner permission bits

❹ Tests group permission bits

❺ Tests other permission bits

The program I created from the source code shown in listing
10.2 is named a.out, the default. Here is a sample run on
the original fileinfo program:

$./a.out fileinfo
File 'fileinfo' is a regular file
Owner permissions: read write execute
Group permissions: read write execute
Other permissions: read write execute

The information shown here corresponds to an ls -l listing
output of -rwxrwxrwx.

Here is the output for system directory /etc:

$./a.out /etc
File '/etc' is a directory
Owner permissions: read write execute

Group permissions: read execute
Other permissions: read execute

From this output, the file type is correctly identified as a
directory. The owner permissions are rwx (the owner is
root). The group and other permissions are r-x, which
means anyone on the computer can read and access
(execute) the directory.

EXERCISE 10.1

The if-else structures in listing 10.2 (fileinfo04.c)
contain a lot of repetition. Seeing repetitive statements in
code cries out to me for a function. Your task for this
exercise is to a write a function that outputs a file’s
permissions.

Call the function permissions_out(). It takes a mode_t
argument of the st_mode member in a stat structure. Here
is the prototype:

void permissions_out(mode_t stm);

Use the function to output a string of permissions for each of
the three access levels: owner, group, other. Use characters
r, w, x, for read, write, and execute access if a bit is set;
use a dash (-) for unset items. This output is the same as
shown in the ls -l listing, but without the leading
character identifying the file type.

A simple approach exists for this function, and I hope you
find it. If not, you can view my solution in the source code
file fileinfo05.c, available in the online repository.
Please try this exercise on your own before peeking at my
solution; comments in my code explain my philosophy. Use
the fileinfo series of programs to perform the basic
operations for the stat() function, if you prefer.

10.2.3 Reading a directory

A directory is a database of files, but call them inodes if you
want to have a nerd find you attractive. Just like a file, a
directory database is stored on media. But you can’t use the
fopen() function to open and read the contents of a
directory. No, instead you use the opendir() function. Here is
its man page format:

DIR *opendir(const char *filename);

The opendir() function accepts a single argument, a string
representing the pathname of the directory to examine.
Specifying the shortcuts . and .. for the current and parent
directory are also valid.

The function returns a pointer to a DIR handle, similar to the
FILE handle used by the fopen() command. As the FILE
handle represents a file stream, the DIR handle represents a
directory stream.

Upon an error, the NULL pointer is returned. The global
errno value is set, indicating the specific booboo the

function encountered.

The opendir() function features a companion closedir()
function, similar to the fclose() function as a companion to
fopen(). The closedir() function requires a single argument,
the DIR handle of an open directory stream, humorously
called “dirp” in the man page format example:

int closedir(DIR *dirp);

Yes, I know that the internet spells it “derp.”

Upon success, the closedir() function returns 0. Otherwise,
the value -1 is returned and the global errno variable is
set, yadda-yadda.

Both the opendir() and closedir() functions are prototyped in
the dirent.h header file.

In the following listing, you see both the opendir() and
closedir() functions put to work. The current directory "." is
opened because it’s always valid.

Listing 10.3 Source code for readdir01.c

#include <stdio.h>
#include <stdlib.h>
#include <dirent.h>

int main()
{

 DIR *dp; ❶

 dp = opendir("."); ❷

 if(dp == NULL) ❸
 {
 puts("Unable to read directory");

 exit(1);
 }

 puts("Directory is opened!");

 closedir(dp); ❹
 puts("Directory is closed!");

 return(0);
}

❶ Directory handle

❷ Opens the current directory, whatever it may be

❸ Exits the program upon failure to open

❹ And just closes it back up

The code in listing 10.3 merely opens and closes the current
directory. Boring! To access the files stored in the directory,
you use another function, readdir(). This function is also
prototyped in the dirent.h header file. Here is the man
page format:

struct dirent *readdir(DIR *dirp);

The function consumes an open DIR handle as its only
argument. The return value is the address of a dirent
structure, which contains details about a directory entry.
This function is called repeatedly to read file entries (inodes)
from the directory stream. The value NULL is returned after
the final entry in the directory has been read.

Sadly, the dirent structure isn’t as rich as I’d like it to be.
Table 10.4 lists the two consistent structure members,
though some C libraries offer more members. Any extra
members are specific to the compiler or operating system

and shouldn’t be relied on for code you plan to release into
the wild. The only two required members for the POSIX.1
standard are d_ino for the entry’s inode and d_name for
the entry’s filename.

Table 10.4 Common members of the dirent structure

Member Data type

(placeholder)

Description

d_ino ino_t (%lu) Inode number

d_reclen unsigned short (%u) Record length

The best structure member to use, and one that’s
consistently available across all compilers and platforms, is
d_name. This member is used in the source code for
readdir02.c, shown in the next listing. This update to
readdir01.c removes two silly puts() statements. Added
is a readdir() statement, along with a printf() function to
output the name of the first file found in the current
directory.

Listing 10.4 Source code for readdir02.c

#include <stdio.h>
#include <stdlib.h>
#include <dirent.h>

int main()
{
 DIR *dp;

 struct dirent *entry; ❶

 dp = opendir(".");
 if(dp == NULL)
 {
 puts("Unable to read directory");

 exit(1);
 }

 entry = readdir(dp); ❷

 printf("File %s\n",entry->d_name); ❸

 closedir(dp);

 return(0);
}

❶ The dirent structure is created as a pointer, a memory address.

❷ The entry is read and stored in the dirent structure entry.

❸ The d_name member is output.

The program generated from the readdir02.c source code
outputs only one file—most likely, the entry for the current
directory itself, the single dot. Obviously, if you want a real
directory-reading program, you must modify the code.

As with using the fread() function to read data from a
regular file , the readdir() function is called repeatedly.
When the function returns a pointer to a dirent structure,
another entry is available in the directory. Only when the
function returns NULL has the full directory been read.

To update the code from readdir02.c to readdir03.c,
you must change the readdir() statement into a while loop
condition. The printf() statement is then set inside the while
loop. Here are the changed lines:

while((entry = readdir(dp)) != NULL)
{
 printf("File %s\n",entry->d_name);
}

The while loop repeats as long as the value returned from
readdir() isn’t NULL. With this update, the program now
outputs all files in the current directory.

To gather more information about files in a directory, use the
stat() function, covered earlier in this chapter. The readdir()
function’s dirent structure contains the file’s name in the
d_name member. When this detail is known, you use the
stat() function to gather details on the file’s type as well as
other information.

The final rendition of the readdir series of programs is shown
next. It combines code previously covered in this chapter to
create a crude directory listing program. Entries are read
one at a time, with the stat() function returning specific
values for file type, size, and access date.

Listing 10.5 Source code for readdir04.c

#include <stdio.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <dirent.h>
#include <time.h>

int main()
{
 DIR *dp;
 struct dirent *entry;
 struct stat fs;
 int r;
 char *filename;

 dp = opendir(".");
 if(dp == NULL)
 {
 puts("Unable to read directory");
 exit(1);
 }

 while((entry = readdir(dp)) != NULL)
 {

 filename = entry->d_name; ❶

 r = stat(filename,&fs); ❷
 if(r==-1)
 {
 fprintf(stderr,"Error reading '%s'\n",filename);
 exit(1);
 }

 if(S_ISDIR(fs.st_mode)) ❸

 printf(" Dir %-16s ",filename); ❹
 else

 printf("File %-16s ",filename); ❺

 printf("%8lu bytes ",fs.st_size); ❻

 printf("%s",ctime(&fs.st_atime)); ❼
 }

 closedir(dp);

 return(0);
}

❶ Saves the directory entry’s name for readability and easy access

❷ Fills the stat structure for the current filename/directory entry

❸ Calls out directories from other file types

❹ Outputs the directory filename left-justified in a 16-character width

❺ Lines up a standard filename just like the directory filename

❻ Outputs the file size in an 8-character width

❼ Outputs the access time, which automatically adds a newline

This code shows that to truly read a directory, you need both
the readdir() and stat() functions. Together, they pull in
details about files in the directory—useful information if you
plan on exploring directories or writing similar file utilities,
such as a directory tree.

Here is sample output from the program generated by the
readdir04.c source code:

 Dir . 4096 bytes Sat Oct 30 16:44:34 2021
 Dir .. 4096 bytes Fri Oct 29 21:55:05 2021
File a.out 8672 bytes Sat Oct 30 16:44:34 2021
File fileinfo 8464 bytes Tue Oct 26 15:55:22 2021
File fileinfo01.c 966 bytes Sat Oct 30 16:24:49 2021
File readdir01.c 268 bytes Fri Oct 29 19:30:10 2021

Incidentally, the order in which directory entries appear is
dependent on the operating system. Some operating
systems sort the entries alphabetically, so the readdir()
function fetches filenames in that order. This behavior isn’t
consistent, so don’t rely upon it for the output of your
directory-reading programs.

10.3 Subdirectory exploration

Directories are referenced in three ways:

As a named path

As the .. shortcut to the parent directory

As a directory entry in the current directory, a
subdirectory

Whatever the approach, pathnames are either direct or
relative. A direct path is a fully named path, starting at the
root directory, your home directory, or the current directory.
A relative pathname uses the .. shortcut for the parent
directory—sometimes, a lot of them.

As an example, a full pathname could be:

/home/dang/documents/finances/bank/statements

This direct pathname shows the directories as they branch
from the root, through my home directory, down to the
statements directory.

If I have another directory,
/home/dang/documents/vacations, but I’m using the
statements directory (shown earlier), the relative path
from statements to vacations is:

../../../vacations

The first .. represents the bank directory. The second ..
represents the finances directory. The third .. represents
the documents directory, where vacations exists as a
subdirectory. This construction demonstrates a relative path.

These details about the path are a basic part of using Linux
at the command prompt. Understanding these items is vital
when it comes to your C programs and how they explore and
access directories.

10.3.1 Using directory exploration tools

Along with using the opendir() function to read a directory
and readdir() to examine directory entries, your code may
need to change directories. Further, the program may want
to know in which directory it’s currently running. Two C
library functions exist to sate these desires: chdir() and
getcwd(). I cover getcwd() first because it can be used to
confirm that the chdir() function did its job.

The getcwd() function obtains the directory in which the
program is operating. Think of the name as Get the Current
Working Directory. It works like the pwd command in the
terminal window. This function is prototyped in the
unistd.h header file. Here is the man page format:

char *getcwd(char *buf, size_t size);

Buffer buf is a character array or buffer of size characters.
It’s where the current directory string is saved, an absolute
path from the root. Here’s a tip: you can use the BUFSIZ
defined constant for the size of the buffer as well as the
second argument to getcwd(). Some C libraries have a
PATH_MAX defined constant, which is available from the
limits.h header file. Because its availability is
inconsistent, I recommend using BUFSIZ instead. (The
PATH_MAX defined constant is covered in chapter 11.)

The return value from getcwd() is the same character
string saved in buf, or NULL upon an error. For the specific
error, check the global errno variable.

The following listing shows a tiny demo program,
getcwd.c, that outputs the current working directory. I use
the BUFSIZ defined constant to set the size for char array
cwd[]. The function is called and then the string output.

Listing 10.6 Source code for getcwd.c

#include <stdio.h>
#include <unistd.h>

int main()
{

 char cwd[BUFSIZ]; ❶
 getcwd(cwd,BUFSIZ);

 printf("The current working directory is %s\n",cwd); ❷

 return(0);
}

❶ The defined constant BUFSIZ is defined in the stdio.h header file.

❷ Outputs the current working directory

When run, the program outputs the current working
directory as a full pathname. The buffer is filled with the
same text you’d see output from the pwd command.

The second useful directory function is chdir(). This function
works like the cd command in Linux. If you pay the senior
price to see a movie, you may have used the chdir command
in MS-DOS, though cd was also available and quicker to
type.

Like getcwd(), the chdir() function is prototyped in the
unistd.h header file. Here is the man page format:

int chdir(const char *path);

The sole argument is a string representing the directory
(path) to change to. The return value is 0 upon success,
with -1 indicating an error. As you may suspect by now, the
global variable errno is set to indicate exactly what went
afoul.

I use both directory exploration functions in the
changecwd.c source code shown in the next listing. The
chdir() function changes to the parent directory, indicated by
the double dots. The getcwd() function obtains the full
pathname to the new directory, outputting the results.

Listing 10.7 Source code for changecwd.c

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int main()
{
 char cwd[BUFSIZ];
 int r;

 r = chdir(".."); ❶
 if(r==-1)
 {
 fprintf(stderr,"Unable to change directories\n");
 exit(1);
 }

 getcwd(cwd,BUFSIZ); ❷

 printf("The current working directory is %s\n",cwd); ❸

 return(0);
}

❶ Changes to the parent directory

❷ Obtains the parent directory’s path

❸ Outputs the parent directory’s path

The resulting program outputs the pathname to the parent
directory of the directory in which the program is run.

You notice in the source code for changecwd.c that I don’t
bother returning to the original directory. Such coding isn’t
necessary. An important thing to remember about using the

chdir() function is that the directory change happens only in
the program’s environment. The program may change to
directories all over the media, but when it’s done, the
directory is the same as where the program started.

10.3.2 Diving into a subdirectory

It’s easy to change to a subdirectory when you know its full
path. An absolute path can be supplied by the user or it can
be hardcoded into the program. But what happens when the
program isn’t aware of its directory’s location?

The parent directory is always known; you can use the
double-dot abbreviation (..) to access the parent of every
directory except the top level. Going up is easy. Going down
requires a bit more work.

Subdirectories are found by using the tools presented so far
in this chapter: scan the current directory for subdirectory
entries. Once known, plug the subdirectory name into the
chdir() function to visit that subdirectory.

The code for subdir01.c in the next listing builds a
program that lists potential subdirectories in a named
directory. Portions of the code are pulled from other
examples listed earlier in this chapter: a directory argument
is required and tested for. The named directory is then
opened and its entries read. If any subdirectories are found,
they’re listed.

Listing 10.8 Source code for subdir01.c

#include <stdio.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <dirent.h>

int main(int argc, char *argv[])
{
 DIR *dp;
 struct dirent *entry;
 struct stat fs;
 int r;
 char *dirname,*filename;

 if(argc<2) ❶
 {
 fprintf(stderr,"Missing directory name\n");
 exit(1);
 }

 dirname = argv[1]; ❷

 dp = opendir(dirname); ❸
 if(dp == NULL)
 {
 fprintf(stderr,"Unable to read directory '%s'\n",
 dirname
);
 exit(1);
 }

 while((entry = readdir(dp)) != NULL) ❹
 {

 filename = entry->d_name; ❺

 r = stat(filename,&fs); ❻

 if(r==-1) ❼
 {
 fprintf(stderr,"Error on '%s'\n",filename);
 exit(1);
 }

 if(S_ISDIR(fs.st_mode)) ❽

 printf("Found directory: %s\n",filename); ❾
 }

 closedir(dp);

 return(0);
}

❶ Confirms that a command-line argument (directory name) is available

❷ Assigns a pointer dirname to the first argument for readability

❸ Opens the directory and tests for an error

❹ Reads entries in the directory

❺ Assigns a pointer filename to each entry for readability

❻ Obtains inode details

❼ Tests for an error

❽ Tests to see whether the file is a directory (subdirectory)

❾ Outputs the directory’s name

The program generated from the source code subdir01.c
reads the directory supplied as a command-line argument
and then outputs any subdirectories found in that directory.
Here is output from a sample run, using my home directory:

$./subdir /home/dang
Found directory: .
Found directory: ..
Error on '.bash_history'

Here is output from the root directory:

$./subdir /home/dang
Found directory: .
Found directory: ..
Error on 'bin'

In both examples, the stat() function fails. Your code could
examine the errno variable, set when the function returns
-1, but I can tell you right away what the error is: the first
argument passed to the stat() function must be a pathname.
In the program, only the directory’s name is supplied, not a
pathname. For example, the .bash_history subdirectory
found in the first sample run shown earlier, and the bin

directory found in the second don’t exist in the current
directory.

The solution is for the program to change to the named
directory. Only when you change to a directory can the code
properly read the files—unless you make the effort to build
full pathnames. I’m too lazy to do that, so to modify the
code, I add the following statements after the statement
dirname = argv[1]:

r = chdir(dirname);
if(r==-1)
{
 fprintf(stderr,"Unable to change to %s\n",dirname);
 exit(1);
}

Further, you must include the unistd.h header file so that
the compiler doesn’t complain about the chdir() function.

With these updates to the code, available in the online
repository as subdir02.c, the program now runs properly:

$./subdir /home/dang
Found directory: .
Found directory: ..
Found directory: .cache
Found directory: .config
Found directory: .ddd
Found directory: .lldb
Found directory: .ssh
Found directory: Dan
Found directory: bin
Found directory: prog
Found directory: sto

Remember: to read files from a directory, you must either
change to the directory (easy) or manually construct full

pathnames for the files (not so easy).

EXERCISE 10.2

Every directory has the dot and dot-dot entries. Plus, many
directories host hidden subdirectories. All hidden files in
Linux start with a single dot. Your task for this exercise is to
modify the source code from subdir02.c to have the
program not output any file that starts with a single dot. My
solution is available in the online repository as subdir03.c.

10.3.3 Mining deeper with recursion

It wasn’t until I wrote my first directory tree exploration
program that I fully understood and appreciated the concept
of recursion. In fact, directory spelunking is a great way to
teach any coder the mechanics behind recursion and how it
can be beneficial.

As a review, recursion is the amazing capability of a function
to call itself. It seems dumb, like an endless loop. Yet within
the function exists an escape hatch, which allows the
recursive function to unwind. Providing that the unwinding
mechanism works, recursion is used in programming to
solve all sorts of wonderful problems beyond just confusing
beginners.

When the subdir program encounters a subdirectory, it can
change to that directory to continue mining for even more
directories. To do so, the same function that read the current
directory is called again but with the subdirectory’s path. The

process is illustrated in figure 10.4. Once the number of
entries in a directory is exhausted, the process ends with a
return to the parent directory. Eventually the functions
return, backtracking to the original directory, and the
program is done.

Figure 10.4 The process of recursively discovering directories

My issue with recursion is always how to unwind it. Plumbing
the depths of subdirectories showed me that once all the
directories are processed, control returns to the parent
directory. Even then, as a seasoned Assembly language
programmer accustomed to working where memory is tight,
I fear blowing up the stack. It hasn’t happened yet—well,
not when I code things properly.

To modify the subdir series of programs into a recursive
directory spelunker, you must remove the program’s core,
which explores subdirectories, and set it into a function. I
call such a function dir(). Its argument is a directory name:

void dir(const char *dirname);

The dir() function uses a while loop to process directory
entries, looking for subdirectories. When found, the function
is called again (within itself) to continue processing directory
entries, looking for another subdirectory. When the entries
are exhausted, the function returns, eventually ending in the
original directory.

The following listing implements the program flow from
figure 10.4, as well as earlier versions of the subdir
programs, to create a separate dir() function. It’s called
recursively (within the function’s while loop) when a
subdirectory is found. The main() function is also modified
so that the current directory (".") is assumed when a
command line argument isn’t supplied.

Listing 10.9 Source code for subdir04.c

#include <stdio.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <dirent.h>
#include <unistd.h>
#include <string.h>

void dir(const char *dirname) ❶
{
 DIR *dp;
 struct dirent *entry;
 struct stat fs;
 char *filename;
 char directory[BUFSIZ];

 if(chdir(dirname)==-1) ❷
 {
 fprintf(stderr,"Unable to change to %s\n",dirname);
 exit(1);
 }

 getcwd(directory,BUFSIZ); ❸

 dp = opendir(directory); ❹
 if(dp==NULL)
 {
 fprintf(stderr,"Unable to read directory '%s'\n",
 directory
);
 exit(1);
 }

 printf("%s\n",directory); ❺

 while((entry=readdir(dp)) != NULL) ❻

 {

 filename = entry->d_name; ❼

 if(strncmp(filename,".",1)==0) ❽
 continue;

 stat(filename,&fs); ❾

 if(S_ISDIR(fs.st_mode)) ❿

 dir(filename); ⓫
 }

 closedir(dp);
}

int main(int argc, char *argv[])
{
 if(argc<2)
 {

 dir("."); ⓬
 }
 else

 dir(argv[1]); ⓭

 return(0);
}

❶ The function’s sole argument is a directory name, dirname.

❷ Confirms that the program can change to the name directory

❸ Gets the full pathname

❹ Confirms that the directory can be opened

❺ Outputs the directory’s name

❻ Loops through the directory’s entries, looking for subdirectories

❼ Saves the found filename for readability

❽ Ignores the dot and dot-dot entries as well as hidden files

❾ Obtains details on the found directory entry (inode)

❿ Checks for a subdirectory

⓫ Recursively calls the dir() function again

⓬ If no argument is supplied, assumes the current directory

⓭ Uses the argument as the named directory

Don’t bother typing in the code for subdir04.c. (Does
anyone type in code from a book anymore?) Don’t even
bother obtaining the source code from the online repository.
The program won’t blow up your computer, but it contains
several flaws.

For example, here is a sample run on my home directory:

$./subdir ~
/home/dang
/mnt/c/Users/Dan
/mnt/c/Users/Dan/3D Objects
Unable to change to AppData

You see the starting directory output correctly,
/home/dang. Next, the program jumps on a symbolic link
to my user profile directory in Windows (from the Linux
command line). So far, so good; it followed the symbolic link
to /mnt/c/Users/Dan. It successfully goes to the 3D
Objects directory, but then it gets lost. The directory
AppData exists, but it’s not the next proper subdirectory to
which the code should branch.

What’s wrong?

The flaw is present in figure 10.4 as well as in the source
code shown in listing 10.9: when the dir() function starts, it
issues the chdir() function to change to the named directory,
dirname. But the dir() function doesn’t change back to the
parent/original directory when it has finished processing a
subdirectory.

To update the code and make the program return to the
parent directory, add the following statements at the end of
the dir() function:

if(chdir("..")==-1)
{
 fprintf(stderr,"Parent directory lost\n");
 exit(1);
}

The updated code is found in the online repository as
subdir05.c. A sample run on my home directory outputs
pages and pages of directories, almost properly.

Almost.

Turns out, the program created from subdir05.c can get
lost, specifically with symbolic links. The code follows the
symbolic link, but when it tries to return to the parent, it
either loses its location or goes to the wrong parent. The
problem lies with the chdir() chunk of statements just added
to the code at the end of the dir() function. The parent
directory isn’t specific:

chdir("..");

This statement changes to the parent directory, but it’s far
better to use the parent directory’s full path. In fact, as I
was playing with the code, I discovered that it’s just best to
work with full pathnames throughout the dir() function.
Some changes are required.

My final update redefines the dir() function as follows:

void dir(const char *dirpath, const char *parentpath);

For readability, I changed the arguments name to reflect
that both are full pathnames. The first is the full pathname
to the directory to scan. The second is the full pathname to
the parent directory. Both are const char types because
neither string is modified within the function.

Listing 10.10 shows the updated dir() function. Most of the
changes involve removing char variable directory and
replacing it with argument dirpath. It’s also no longer
necessary to change to the named directory in the function,
which now assumes that the dirpath argument represents
the current directory. Further comments are found in the
code.

Listing 10.10 The updated dir() function from subdir06.c

void dir(const char *dirpath,const char *parentpath)
{
 DIR *dp;
 struct dirent *entry;
 struct stat fs;

 char subdirpath[BUFSIZ]; ❶

 dp = opendir(dirpath); ❷
 if(dp==NULL)
 {
 fprintf(stderr,"Unable to read directory '%s'\n",
 dirpath
);
 exit(1);
 }

 printf("%s\n",dirpath); ❸

 while((entry=readdir(dp)) != NULL) ❹
 {

 if(strncmp(entry->d_name,".",1)==0) ❺
 continue;

 stat(entry->d_name,&fs); ❻

 if(S_ISDIR(fs.st_mode)) ❼
 {

 if(chdir(entry->d_name)==-1) ❽
 {
 fprintf(stderr,"Unable to change to %s\n",
 entry->d_name
);
 exit(1);
 }

 getcwd(subdirpath,BUFSIZ); ❾

 dir(subdirpath,dirpath); ❿
 }
 }

 closedir(dp); ⓫

 if(chdir(parentpath)==-1) ⓬
 {

 if(parentpath==NULL) ⓭
 return;
 fprintf(stderr,"Parent directory lost\n");
 exit(1);
 }
}

❶ Storage for the new directory to change to, storing the full pathname

❷ The program is already in the desired directory, so rather than change to it, the code

attempts to open the directory and read entries.

❸ Outputs the current directory path

❹ Reads all entries in the directory

❺ Avoids any dot entries

❻ Gets info for each directory entry (inode)

❼ Checks for a subdirectory entry

❽ Changes to the subdirectory

❾ Gets the subdirectory’s full pathname for the recursive call

❿ Recursively calls the function with the subdirectory and current directory as arguments

⓫ Closes the current directory after all entries are read

⓬ Changes back to the parent directory—full pathname

⓭ Checks for NULL, in which case, just returns

Updating the dir() function requires that the main() function
be updated as well. It has more work to do: the main()
function must obtain the full pathname to the current
directory or the argv[1] value, as well as the directory’s
parent. This update to the main() function is shown here.

Listing 10.11 The updated main() function for subdir06.c

int main(int argc, char *argv[])
{
 char current[BUFSIZ];

 if(argc<2)
 {

 getcwd(current,BUFSIZ); ❶
 }
 else
 {

 strcpy(current,argv[1]); ❷

 if(chdir(current)==-1) ❸
 {
 fprintf(stderr,"Unable to access directory %s\n",
 current
);
 exit(1);
 }

 getcwd(current,BUFSIZ); ❹
 }

 dir(current,NULL); ❺

 return(0);
}

❶ For no arguments, obtains and stores the full path to the current directory

❷ Copies the first argument; hopefully, a directory

❸ Changes to the directory and checks for errors

❹ Gets the directory’s full pathname

❺ Calls the function; NULL is checked in dir().

The full source code file is available in the online repository
as subdir06.c. It accepts a directory argument or no
argument, in which case the current directory is plumbed.

Even though the program uses full pathnames, it may still
get lost. Specifically, for symbolic links, the code may
wander away from where you intend. Some types of links,
such as aliases in Mac OS X, aren’t recognized as directories,
so they’re skipped. And when processing system directories,
specifically those that contain block or character files, the
program’s stack may overflow and generate a segmentation
fault.

10.4 A directory tree

The ancient MS-DOS operating system featured the TREE
utility. It dumped a map of the current directory structure in
a festive, graphical (for a text screen) manner. This
command is still available in Windows. In the CMD
(command prompt) program in Windows, type TREE and
you see output like that shown in figure 10.5: directories
appear in a hierarchical structure, with lines connecting
parent directories and subdirectories in a festive manner,
along with indentation showing directory depth.

Figure 10.5 Output from the TREE command

The mechanics behind creating a directory tree program are
already known to you. The source code for subdir06.c
processes directories and subdirectories in the same manner
as the output shown in figure 10.5. What’s missing are the
shortened directory names, text mode graphics, and

indentation. You can add these items, creating your own
directory tree utility.

10.4.1 Pulling out the directory name

To mimic the old TREE utility, the dir() function must extract
the directory name from the full pathname. Because full
pathnames are used, and the string doesn’t end with a
trailing slash, everything from the last slash in the string to
the null character qualifies as the directory’s name.

The easy way to extract the current directory name from a
full pathname is to save the name when it’s found in the
parent directory: the entry->d_name structure member
contains the directory’s name as it appears in the parent’s
directory listing. To make this modification, the dir() function
requires another argument, the short directory name. This
modification is simple to code, which is why this approach is
the easy way.

The problem with the easy way is that the main() function
obtains a full directory path when the program is started
without an argument. So, even if you choose the easy way,
you still must extract the directory name from the full
pathname in the main() function. Therefore, my approach is
to code a new function that pulls a directory name (or
filename) from the end of a path.

When I add new features to a program, such as when
extracting a directory name from the butt end of a
pathname, I write test code. In the next listing, you see the

test code for the extract() function. Its job is to plow
through a pathname to pull out the last part—assuming the
last part of the string (after the final/separator character) is
a directory name. Oh, and the function also assumes the
environment is Linux; if you’re using Windows, you specify
the backslash (two of them: \\) as the path separator,
though Windows 10 may also recognize the forward slash.

Listing 10.12 Source code for extractor.c

#include <stdio.h>
#include <string.h>

const char *extract(char *path)
{
 const char *p;
 int len;

 len = strlen(path);

 if(len==0) ❶
 return(NULL);

 if(len==1 & *(path+0)=='/') ❷
 return(path);

 p = path+len; ❸

 while(*p != '/') ❹
 {
 p--;

 if(p==path) ❺
 return(NULL);
 }

 p++; ❻

 if(*p == '\0') ❼
 return(NULL);
 else

 return(p); ❽
}

int main()
{
 const int count=4;

 const char *pathname[count] = { ❾

 "/home/dang",
 "/usr/local/this/that",
 "/",
 "nothing here"
 };
 int x;

 for(x=0; x<count; x++)
 {
 printf("%s -> %s\n",
 pathname[x],
 extract(pathname[x])
);
 }

 return(0);
}

❶ If the string is empty, returns NULL

❷ Performs a special test for the root directory

❸ Positions pointer p at the end of string path

❹ Backs up p to find the separator; for Windows, uses \\ as the separator

❺ If p backs up too far, returns NULL

❻ Increments p over the separator character

❼ Tests to see if the string is empty or malformed and returns NULL

❽ Returns the address where the final directory name starts

❾ Tests strings for a variety of configurations

The extract() function backs up through the pathname string
passed. Pointer p scans for the / separator. It leaves the
function referencing the position in the string path where the
final directory name starts. Upon an error, NULL is returned.
A series of test strings in the main() function puts the
extract() function to work. Here is the output:

/home/dang -> dang
/usr/local/this/that -> that
/ -> /
nothing here -> (null)

The extract() function successfully processes each string,
returning the last part, the directory name. It even catches
the malformed string, properly returning NULL.

For my first rendition of the directory tree program, I added
the extract() function to the final update to the subdir series
of programs, subdir06.c. The extract() function is called
from within the dir() function, just before the main while
loop that reads directory entries, replacing the existing
printf() statement at that line:

printf("%s\n",extract(dirpath));

This update is saved as dirtree01.c. The resulting
program, dirtree, outputs the directories but only their
names and not the full pathnames. The output is almost a
directory tree program, but without proper indenting for
each subdirectory level.

10.4.2 Monitoring directory depth

Programming the fancy output from the old TREE command,
shown in figure 10.5, is more complicated than it looks.
Emulating it exactly requires that the code use wide
character output (covered in chapter 8). Further, the
directory’s depth must be monitored as well as when the last
subdirectory in a directory is output. Indeed, to fully emulate
the TREE command requires massively restructuring the
dirtree program, primarily to save directory entries for
output later.

Yeah, so I’m not going there—not all the way.

Rather than restructure the entire code, I thought I’d add
some indentation to make the directory output of my dirtree
series a bit more “tree”-like. This addition requires that the
directory depth be monitored so that each subdirectory is
indented a notch. To monitor the directory depth, the
definition of the dir() function is updated:

void dir(const char *dirpath,const char *parentpath, int depth);

I consider three arguments to be the maximum for a
function. Any more arguments, and it becomes obvious to
me that what should really be passed to the function is a
structure. In fact, I wrote a version of the dirtree program
that held directory entries in an array of structures. That
code became overly complex, however, so I decided to just
modify the dir() function as shown earlier.

To complete the modification in the code, three more
changes are required. First, in the main() function, the dir()
function is originally called with zero as its third argument:

dir(current,NULL,0);

The zero sets the indent depth as the program starts; the
first directory is the top level.

Second, the recursive call within the dir() function must be
modified, adding the third argument depth:

dir(subdirpath,dirpath,depth+1);

For the recursive call, which means the program is diving
down one directory level, the indent level depth is
increased by one.

Finally, something must be done with the depth variable
within the dir() function. I opted to add a loop that outputs a
chunk of three spaces for every depth level. This loop
requires a new variable to be declared for function dir(),
integer i (for indent):

for(i=0; i<depth; i++)
 printf(" ");

This loop appears before the printf() statement that outputs
the directory’s name, just before the while loop. The result is
that each subdirectory is indented three spaces as the
directory tree is output.

The source code for dirtree02.c is available in the online
repository. Here is the program’s output for my prog
(programming) directory:

prog
 asm
 c
 blog
 clock
 debug
 jpeg
 opengl
 wchar
 xmljson
 zlib
 python

Each subdirectory is indented three spaces. The sub-
subdirectories of the c directory are further indented.

EXERCISE 10.3

Modify the source code for dirtree02.c so that instead of
indenting with blanks, the subdirectories appear with text
mode graphics. For example:

prog
+--asm
+--c
| +--blog
| +--clock
| +--debug
| +--jpeg
| +--opengl
| +--wchar
| +--xmljson
| +--zlib
+--python

These graphics aren’t as fancy (or precise) as those from the
MS-DOS TREE command, but they are an improvement. This
modification requires only a few lines of code. My solution is
available in the online repository as dirtree03.c.

11 File finder

Back in ancient times, one of the most popular MS-DOS
utilities I wrote was the Fast File Finder. It wasn’t
particularly fast, of course. But it did the job of finding a file
anywhere on the PC’s hard drive when given a filename.
This program was included on the companion floppy
diskettes provided with many of my early computing books.
Yes, floppy diskettes.

In today’s operating systems, finding files is a big deal. Both
Windows and Mac OS X feature powerful file-finding tools,
locating files by not only name but also date, size, and
content. The Linux command prompt offers its own slate of
file-finding tools, just as powerful (if not more so) as their
graphical counterparts. For a budding C programmer, or
anyone desiring to build their C kung fu, using these tools is
useful, but you can’t improve your programming skills by
just using the tools.

Hunting for files, and potentially doing something with
them, relies upon the directory-spelunking tools covered in
chapter 10. From this base, you can expand your
knowledge of C by:

Reviewing other file-finding utilities

Exploring methods for finding text

Locating files in a directory tree

Using wildcards to match files
Finding filename duplicates

When I program a utility, especially one that’s similar to one
that’s already available, I look for improvements. Many
command-line tools feature a parade of options and
features. These switches make the command powerful but
beyond what I need. I find the abundance of options
overwhelming. Better for me is to build a more specific
version of the utility. Although such a program may not
have the muscle of something coded by expert C
programmers of yore, it’s specific to my needs. By writing
your own file tools, you learn more about programming in
C, plus you get a tool you can use—and customize to your
workflow.

11.1 The great file hunt

My personal-file finding utilities are based on frustration
with the existing crop of Linux file finding tools—specifically,
find and grep.

Nothing is wrong with these commands that some well-
chosen curse words can’t address. Still, I find myself unable
to commit the command formats and options to memory. I
constantly refer to the documentation when it comes to
using these file-finding tools. I understand that this
admission could get me kicked out of the neighborhood
computer club.

The find command is powerful. In Linux, such power implies
options galore, often more command-line switches available
than letters of the alphabet—upper- and lowercase. This
complexity explains why many nerds resort instead to using
GUI file-search tools instead of a terminal window to locate
lost files.

Here is the deceptively simple format for the find command:

find path way-too-many-options

Yep. Easy.

Suppose you want to locate a file named budget.csv,
located somewhere in your home directory tree. Here is the
command to use:

find ~ -name budget.csv -print

The pathname is ~, shortcut for your home directory. The -
name switch identifies the file to locate, budget.csv. The
final switch, -print (the one everyone forgets), directs the
find command to send the results to standard output. You
may think something like output would be the necessary
default, but the find command can do more with found files
than send their names to standard output.

The find command’s desired output may appear on a line by
itself, which is fortunate. More common is that you must sift
through a long series of errors and duplicate matches.
Eventually the desired file is found, and its path revealed:

/home/dang/documents/financial/budget.csv

Yes, you can create an alias to the specific find utility format
you use often. No, I’m not going to get into a debate about
how powerful and useful the find command is or why I’m a
dweeb for not comparing it with a sunshine lollypop for
delicious goodness.

The other file-finding command is grep, which I use
specifically to locate files containing a specific tidbit of text.
In fact, I’ve used grep many times when writing this book
to locate defined constants in header files. From the
/usr/include directory, here is the command to locate
the time_t defined constant in various header files:

grep -r "time_t" *

The -r switch directs grep to recursively look through
directories. The string to find is time_t and the * wildcard
directs the program to search all filenames.

Many lines of text spew forth when issuing this command,
because the time_t defined constant is referenced in
multiple header files. Even this trick didn’t locate the
specific definition I wanted, though it pointed me in the
right direction.

These utilities—find and grep (and its better cousin, egrep)
—are wonderful and powerful. Yet I want something friendly
and usable without the requirement of chronically checking

man pages or referring to hefty command-line reference
books. This is why I code my own versions, covered in this
chapter.

With your knowledge of C, you can easily code your own
file-finding utilities specific to your needs, as complex or as
simple as you desire. Then, if you forget any of the options,
you have only yourself to blame.

11.2 A file finder

My goal for finding files is to type a command like this:

find thisfile.txt

The utility digs deep through the current directory tree,
scouring subdirectory after subdirectory, hunting for the
specific file. If found, the full pathname is output—useful
information to me. Add in the capability of using wildcards
to locate files, and I’ll never need the find command again—
in the specific format to locate a file.

Oh, yeah—I suppose my own utility must be named
something other than find, already used in Linux. How
about ff for Find File?

11.2.1 Coding the Find File utility

Chapter 10 covers the process of directory exploration,
using the recursive dir() function to plumb subdirectory

depths. Building upon this function is perfect for creating a
file-finding utility. The goal is to scan directories and
compare those files found with a matching filename
supplied by the user.

The Find File utility presented in this chapter doesn’t use
the same dir() function from chapter 10. No, the recursive
directory-finding function requires modification to locate
specific files, not all files. I’ve renamed the function find()
because I know the name would infuriate the find utility.

My find() function features the same first two arguments as
dir() from chapter 10. But as shown in the next listing, this
updated function adds a third argument, match, to help
hunt for the named file. Other differences between dir() and
find() are commented in the listing.

Listing 11.1 The recursive find() function

void find(char *dirpath,char *parentpath,char *match)
{
 DIR *dp;
 struct dirent *entry;
 struct stat fs;

 char subdirpath[PATH_MAX]; ❶

 dp = opendir(dirpath);
 if(dp==NULL)
 {
 fprintf(stderr,"Unable to read directory '%s'\n",
 dirpath
);
 exit(1);
 }

 while((entry=readdir(dp)) != NULL)
 {

 if(strcmp(entry->d_name,match)==0) ❷
 {

 printf("%s/%s\n",dirpath,match); ❸

 count++; ❹
 }

 stat(entry->d_name,&fs);
 if(S_ISDIR(fs.st_mode))
 {

 if(strncmp(entry->d_name,".",1)==0) ❺
 continue;
 if(chdir(entry->d_name)==-1)
 {
 fprintf(stderr,"Unable to change to %s\n",
 entry->d_name
);
 exit(1);
 }

 getcwd(subdirpath,BUFSIZ);

 find(subdirpath,dirpath,match); ❻
 }
 }

 closedir(dp);

 if(chdir(parentpath)==-1)
 {
 if(parentpath==NULL)
 return;
 fprintf(stderr,"Parent directory lost\n");
 exit(1);
 }
}

❶ Use the limits.h value for the maximum path size (see the discussion in the text).

❷ Performs a comparison for the filename found with the passed filename

❸ Outputs any matching filename

❹ Increments the external count variable

❺ Avoids checking the hidden files

❻ The recursive call, again with the passed filename to match as the third argument

Beyond the additions noted in listing 11.1, I use the
PATH_MAX defined constant, which requires including the
limits.h header file. Because not every C library

implements PATH_MAX, some preprocessor directives are
required:

#ifndef PATH_MAX
#define PATH_MAX 256
#endif

The value of PATH_MAX differs depending on the operating
system. For example, in Windows it could be 260 bytes, but
in my version of Ubuntu Linux, it’s 1024. I’ve seen it as high
as 4096 bytes, so 256 seems like a good value that won’t
blow up anything. If you want to define a higher value, feel
free to do so.

My Find File utility also counts matched files. To keep track,
I use the variable count, which is defined externally. I am
loath to use global variables, but in this situation having
count be external is an effective way to keep track of files
found. Otherwise, I could include count as a fourth
argument to the find() function, but as a recursive function,
maintaining its value consistently introduces all kinds of
chaos.

The source code that includes the find() function is named
findfile01.c, where the main() function is shown in the
following listing. The main() function’s job is to fetch the
filename from the command line, retrieve the current path,
make the call to the find() function, and then report the
results. The main() function is shown here.

Listing 11.2 The main() function from findfile01.c

int main(int argc, char *argv[])
{
 char current[PATH_MAX];

 if(argc<2) ❶
 {
 fprintf(stderr,"Format: ff filename\n");
 exit(1);
 }

 getcwd(current,PATH_MAX);
 if(chdir(current)==-1)
 {
 fprintf(stderr,"Unable to access directory %s\n",
 current
);
 exit(1);
 }

 count = 0; ❷
 printf("Searching for '%s'\n",argv[1]);

 find(current,NULL,argv[1]); ❸

 printf(" Found %d match",count); ❹

 if(count!=1) ❺
 printf("es");
 putchar('\n');
 return(0);
}

❶ A command-line argument is required.

❷ Initializes the external int variable count, keeping track of the files found

❸ Calls the function, with the filename argument specified third

❹ Reports the results

❺ Magically adds “es” for any count value other than 1

Both find() and main() are included in the source code file
findfile01.c, available in this book’s online repository.
I’ve built the source code into the program file named ff.
Here are a few sample runs:

$ ff a.out
Searching for 'a.out'

/Users/Dan/code/a.out
/Users/Dan/code/communications/a.out
/Users/Dan/code/communications/networking/a.out
/Users/Dan/Tiny C Projects/code/08_unicode/a.out
/Users/Dan/Tiny C Projects/code/11_filefind/a.out
 Found 5 matches

The Find File utility locates all the a.out files in my home
directory tree:

$ ff hello
Searching for 'hello'
 Found 0 matches

In the previous example, the utility doesn’t find any files
named hello:

$ ff *.c
Searching for 'finddupe01.c'
/Users/Dan/Tiny C Projects/code/11_filefind/finddupe01.c
 Found 1 match

The utility attempts to locate all files with the .c extension
in the current directory. Rather than return them all, you
see only the first match reported: finddupe01.c. The
problem here is that the code doesn’t recognize wildcards;
it finds only specific filenames.

To match files with wildcards, you must understand
something known as the glob. Unlike The Blob, star of the
eponymous 1958 horror film, knowing the glob won’t get
you killed.

11.2.2 Understanding the glob

A glob can be an insidious lump of goo from outer space,
but in the computer world, it’s short for global. Specifically,
glob is a way to use wildcards to specify or match
filenames. Most humans I know prefer to say “wildcard” as
opposed to “glob.” But in the programming realm, the term
is glob, the process is globbing, and people who glob are
globbers. The C library function worthy of attention is
glob().

As a review, the filename wildcards are:

? to match a single character

* to match a group of more than one character

In Windows, globbing takes place automatically. But in the
Linux environment, the glob feature must be activated for
wildcards to expand. If not, the * and ? wildcards are
interpreted literally, which isn’t what most users expect.

To ensure that globbing is active, type the set -o command.
In the output, the noglob option should be set to off:

noglob off

If you see that the option is on, use this command:

set +o noglob

When globbing is active, the shell expands the ? and *
wildcards to match files. In the preceding section, the input

provided is *.c. Yet the program processed only one file
named finddupe01.c. The filename is a match, but it’s
not the only *.c filename in the directory. What gives?

The code in the next listing helps you understand how
globbing works when wildcards are typed at the command
prompt. The program generated from glob01.c loops
through all command-line options typed, minus the first
item, which is the program filename.

Listing 11.3 Source code for glob01.c

#include <stdio.h>

int main(int argc, char *argv[])
{
 int x;

 if(argc>1) ❶
 {

 for(x=1; x<argc; x++) ❷
 printf("%s\n",argv[x]);
 }

 return(0);
}

❶ Don’t bother if only the program name is typed at the prompt.

❷ Loops through all the arguments

Here is a sample run of the program created from
glob01.c, which is named a.out:

$./a.out this that the other
this
that
the
other

The program dutifully echoes all command-line options.
Now try running the same program, but with a wildcard
specified:

$./a.out *.c
finddupe01.c
finddupe02.c
finddupe03.c
finddupe04.c
finddupe05.c
findfile01.c

findfile02.c
glob01.c
glob02.c

The *.c wildcard (globby thing) is expanded by the shell,
which feeds each matching filename from the current
directory to the program as a command-line argument.
Instead of a single argument, *.c, multiple arguments are
supplied.

The problem with globbing is that your program really
doesn’t know whether multiple command-line arguments
are supplied or a single wildcard is typed and expanded.
Further, because the wildcard argument is translated into
multiple matching files, you have no way of knowing which
wildcard was specified. Perhaps some way exists, because I
know utilities that can perform wildcard matching in
amazing ways, but I’ve yet to discover what this magic is.

Rather than be flustered, you can rely upon the glob()
function to do the pattern matching for you. Here is the
man page format:

int glob(const char *pattern, int flags, int (*errfunc) (const char *epath, int
eerrno), glob_t *pglob);

The function has four arguments:

const char *pattern is a pathname wildcard pattern
to match.

int flags are options to customize the function’s
behavior, usually a series of defined constants logically
OR’d together.

int (*errfunc) is the name of an error-handling
function (along with its two arguments), which is
necessary because the glob() function can be quirky.
Specify NULL to use the default error handler.
glob_t *pglob is a structure containing details about
the matching files. Two useful members are gl_pathc,
which lists the number of matching files, and
gl_pathv, which serves as the base of a pointer list
referencing matching filenames in the current directory.

The glob() function returns zero on success. Other return
values include defined constants you can test to determine
whether the function screwed up or failed to find any
matching files.

More scintillating details are available about the glob()
function in the man pages. Pay special attention to the
flags argument because it’s easy for various issues to
arise.

You must include the glob.h header file in your source
code to keep the compiler content with the glob() function.

In the next listing, the source code for glob02.c uses the
glob() function to scan for matching files in the current
directory. The user is prompted for input. The input string is
scrubbed of any newlines. The glob() function is called to
process input, searching for filenames that match any
wildcards specified. Finally, a while loop outputs the
matching filenames.

Listing 11.4 Source code for glob02.c

#include <stdio.h>
#include <stdlib.h>
#include <glob.h>

#include <limits.h> ❶

#ifndef PATH_MAX ❷
#define PATH_MAX 256
#endif

int main()
{
 char filename[PATH_MAX];
 char *r;

 int g; ❸

 glob_t gstruct; ❹

 char **found; ❺

 printf("Filename or wildcard: "); ❻
 r = fgets(filename,PATH_MAX,stdin);
 if(r==NULL)
 exit(1);
 while(*r!='\0')
 {
 if(*r=='\n')
 {
 *r = '\0';
 break;
 }

 r++;
 }

 g = glob(filename, GLOB_ERR , NULL, &gstruct); ❼

 if(g!=0) ❽
 {
 if(g==GLOB_NOMATCH)
 fprintf(stderr,"No matches for '%s'\n",filename);
 else
 fprintf(stderr,"Some kinda glob error\n");
 exit(1);
 }

 printf("Found %zu filename matches\n",[CA]gstruct.gl_pathc); ❾

 found = gstruct.gl_pathv; ❿

 while(*found) ⓫
 {

 printf("%s\n",*found); ⓬

 found++; ⓭
 }

 return(0);
}

❶ For the definition of PATH_MAX—if available

❷ If PATH_MAX isn’t defined, creates it

❸ The return value of glob()

❹ The structure specified in the glob() function

❺ A double-pointer to the list of matching filenames

❻ Prompts for the filename wildcard; this chunk of code is to verify the input and remove the

newline.

❼ The call to the glob() function, mostly defaults except for the GLOB_ERR flag

❽ Checks for errors, specifically no matching filename

❾ Outputs the matches using structure member gl_pathc; the placeholder %zu is used for

a size_t value.

❿ The gl_pathv member is the base of a pointer list, assigned to double pointer found.

⓫ Loops as long as the string referenced by *found isn’t NULL

⓬ Outputs the matching filename

⓭ Increments the found pointer to reference the next item in the list

Remember, the wildcard input must be supplied by the user
because the program doesn’t interpret wildcard input as a
command-line argument. Here is a sample run:

Filename or wildcard: find*
Found 7 filename matches
finddupe01.c
finddupe02.c
finddupe03.c
finddupe04.c
finddupe05.c
findfile01.c
findfile02.c

The program successfully found all files starting with find.
The techniques used in the source code can now be
incorporated into the Find File utility to use wildcards in its
search.

11.2.3 Using wildcards to find files

Some modifications are necessary for the Find File utility to
take advantage of wildcards. To assist the glob() function,
the matching filename must now be entered at a prompt,
similar to the glob02.c program in the preceding section.
Then the glob() function must be integrated into the find()
function to help scour subdirectories for matching
filenames.

Modifications to the main() function can be found in the
source code file, findfile02.c, available in the online
repository. These updates reflect added statements from
the glob02.c source code file, mostly to accept and

confirm input regarding wildcards. The rest of the
modifications are shown in the following listing, where the
glob() function is integrated into the find() function. In this
version of the code, the string argument match can be a
specific filename or a filename including wildcards.

Listing 11.5 The find() function from source code file findfile02.c

void find(char *dirpath,char *parentpath,char *match)
{
 DIR *dp;
 struct dirent *entry;
 struct stat fs;
 char subdirpath[PATH_MAX];
 int g;
 glob_t gstruct;
 char **found;
 dp = opendir(dirpath);
 if(dp==NULL)
 {
 fprintf(stderr,"Unable to read directory '%s'\n",
 dirpath
);
 exit(1);
 }

 g = glob(match, GLOB_ERR, NULL, &gstruct); ❶

 if(g==0) ❷
 {
 found = gstruct.gl_pathv;
 while(*found)
 {
 printf("%s/%s\n",dirpath,*found);
 found++;
 count++;
 }
 }

 while((entry=readdir(dp)) != NULL) ❸
 {
 stat(entry->d_name,&fs);

 if(S_ISDIR(fs.st_mode)) ❹
 {
 if(strncmp(entry->d_name,".",1)==0)
 continue;

 if(chdir(entry->d_name)==-1)
 {
 fprintf(stderr,"Unable to change to %s\n",
 entry->d_name
);
 exit(1);
 }

 getcwd(subdirpath,BUFSIZ);
 find(subdirpath,dirpath,match);
 }
 }

 closedir(dp);

 if(chdir(parentpath)==-1)
 {
 if(parentpath==NULL)
 return;
 fprintf(stderr,"Parent directory lost\n");
 exit(1);
 }
}

❶ Uses glob() to find matching files in the directory

❷ Upon success, outputs the found files (here instead of below)

❸ This loop is still necessary to find and explore subdirectories.

❹ Just look for directory files here; matching files already output.

In its final incarnation, the Find File utility (source code file
findfile02.c) prompts for input, which can be a specific
file or a wildcard. All files in the current directory and in all
subdirectories are searched with the results reported:

$ ff
Filename or wildcard: *.c
Searching for '*.c'
/Users/Dan/code/0424a.c
/Users/Dan/code/0424b.c
...
/Users/Dan/Tiny C Projects/code/11_filefind/sto/unique04.c
/Users/Dan/Tiny C Projects/code/11_filefind/sto/unique05.c
/Users/Dan/Tiny C Projects/code/11_filefind/sto/unique06.c
 Found 192 matches

Here, the Find File utility located 192 C source code files in
my home folder.

$ ff
Filename or wildcard: *deposit*
Searching for '*deposit*'
/Users/Dan/Documents/bank deposit.docx
 Found 1 match

In the sample run shown here, the Find File utility located
my bank deposit document. Having the glob() function in
the program allows wildcards to be used effectively. Though
the program can still locate specific files when the full name
is input:

$ ff
Filename or wildcard: ch03.docx
Searching for 'ch03.docx'
/Users/Dan/Documents/Word/text/ch03.docx
 Found 1 match

As I wrote earlier, I use this utility often because it’s simple
and it generates the results I want. What I don’t want is to
keep working on the utility, which may eventually lead me
to reinvent the find program. No, instead, the concept of
finding a file can be taken further to locating duplicate files.

11.3 The duplicate file finder

One my favorite shareware utilities for MS-DOS is finddupe.
I’ve found nothing like it for Windows (not that I’ve
aggressively looked). A version of the utility is still available
for the command shell in Windows. It finds duplicate files,

not just by name but also by contents. finddupe is a handy
tool for cleaning up and organizing files on a mass storage
device.

I never bothered coding my own finddupe utility, mostly
because the existing tool is spiffy. Even so, I often thought
of the process: the program must not only scan all
directories but also must record filenames. From the list of
recorded filenames, each must be compared with others in
the list to see whether the same name exists. I tremble at
the thought of the added process of comparing file
contents.

Still, the topic intrigued me: How would you scan files in
subdirectories and then check to see whether any duplicate
names are found?

The process of creating a Find Dupe utility borrows heavily
from the subdirectory scanning tools presented in chapter
10 and used earlier in this chapter. But the rest of the code
—recording and scanning the list of saved files—is new
territory: a list of files must be created. The list must be
scanned for duplicates and then the duplicates output,
along with their pathnames.

11.3.1 Building a file list

As with any programming projects, I made several attempts
to successfully build a list of files found in subdirectories. It
was obvious that I’d need some kind of structure to hold the
file information: name, path, and so on. But do I create a

dynamic array (allocated pointers) of structures, use a
linked list, make the structure array external, or just give
up and become a dairy farmer?

To me, making any variable external is a last choice.
Sometimes it’s the only choice, but never should it be a
choice because it’s easy to do. As shown earlier in this
chapter with the count variable, sometimes it’s necessary
because the other ways to implement the variable are
awkward. Especially with recursion, having an external
variable untangles some knots that are otherwise at the
Christmas-tree-light level.

The two options remaining are to pass a dynamically
allocated list or use a linked list. I wrote several iterations of
the code where a dynamically allocated list of structures
was passed to the recursive function. It failed, which is easy
because pointers can get lost in recursion. Therefore, my
only remaining option is to create a linked list.

A linked list structure must have as a member a pointer to
the next item, or node, in the list. This member becomes
part of the structure that stores found filenames and their
paths. Here is its definition:

struct finfo {
 int index;
 char name[BUFSIZ];
 char path[PATH_MAX];
 struct finfo *next;
};

I originally named the structure fileinfo. I would have
kept the name, but this book’s margins are only so wide
and I don’t like wrapping source code. So, I settled on
finfo. This structure contains four members:

index, which keeps a count of the files found (avoiding
an external variable)

name, which contains the name of the found file

path, which contains the full path to the file

next, which references the next node in the linked list,
or NULL for the end of the list

This structure must be declared externally so that all
functions in the code understand its definition.

My first build of the program is simply to see whether the
thing works: that the linked list is properly allocated, filled,
and returned from the recursive function. In the next
listing, you see the main() function. It allocates the first
node in the linked list. This structure must be empty; it’s
the recursive function find() that builds the linked list. The
main() function fetches the starting directory for a call to
the recursive function. Upon completion, a while loop
outputs the names of the files referenced by the linked list.

Listing 11.6 The main() function from finddupe01.c

int main()
{
 char startdir[PATH_MAX];

 struct finfo *first,*current; ❶

 first = malloc(sizeof(struct finfo) * 1); ❷

 if(first==NULL) ❸
 {
 fprintf(stderr,"Unable to allocate memory\n");
 exit(1);
 }

 first->index = 0; ❹

 strcpy(first->name,""); ❹

 strcpy(first->path,""); ❹

 first->next = NULL; ❹

 getcwd(startdir,PATH_MAX); ❺
 if(chdir(startdir)==-1)
 {
 fprintf(stderr,"Unable to access directory %s\n",
 startdir
);
 exit(1);
 }

 find(startdir,NULL,first); ❻

 current = first; ❼

 while(current) ❽
 {

 if(current->index > 0) ❾

 printf("%d:%s/%s\n", ❿
 current->index,
 current->path,
 current->name
);

 current = current->next; ⓫
 }

 return(0);
}

❶ A pointer is needed for the base (first) and for examining the items in the list

(current).

❷ Allocates the base pointer

❸ Confirms the pointer is allocated

❹ Fills the first node with empty values

❺ Obtains the current directory for the find() function call

❻ Calls the recursive function

❼ Sets the current pointer to the start of the list

❽ Loops as long as the current pointer isn’t NULL

❾ Skips over the first item in the list, zero

❿ Outputs the index value, pathname, and filename

⓫ References the next item in the list

The while loop skips the first node in the linked list, the
empty item. I could avoid the if(current->index > 0)
text (shown earlier) by replacing the initialization statement
for current with:

current = first->next;

I only just thought of this change now, so you won’t find it
in the source code files. Either way, the first node in the
linked list is skipped over.

The find() function for my Find Dupe code is based upon the
find() function in the Find File utility presented earlier in this
chapter. The third argument of the find() function is
replaced by a pointer to the current node in the linked list.
The function’s job is to create new nodes, filling their
structures as it finds files in the current directory.

The next listing shows the find() function for the Find Dupe
utility, which is called from the main() function shown in
listing 11.6. This function allocates storage for a new node
in the list upon finding a file in the current directory. This
change is the only addition to the function.

Listing 11.7 The find() function from finddupe01.c

void find(char *dirpath, char *parentpath, struct finfo *f)
{
 DIR *dp;
 struct dirent *entry;
 struct stat fs;
 char subdirpath[PATH_MAX];
 int i;

 dp = opendir(dirpath); ❶
 if(dp==NULL)
 {
 fprintf(stderr,"Unable to read directory '%s'\n",
 dirpath
);
 exit(1);
 /* will free memory as it exits */
 }

 while((entry=readdir(dp)) != NULL)
 {
 stat(entry->d_name,&fs);

 if(S_ISDIR(fs.st_mode)) ❷
 {
 if(strncmp(entry->d_name,".",1)==0)
 continue;
 if(chdir(entry->d_name)==-1)
 {
 fprintf(stderr,"Unable to change to %s\n",
 entry->d_name
);
 exit(1);
 }
 getcwd(subdirpath,BUFSIZ);
 find(subdirpath,dirpath,f);
 }

 else ❸
 {

 f->next = malloc(sizeof(struct finfo) * 1); ❹
 if(f->next == NULL)
 {
 fprintf(stderr,
 "Unable to allocate new structure\n");
 exit(1);
 }

 i = f->index; ❺

 f = f->next; ❻

 f->index = i+1; ❼

 strcpy(f->name,entry->d_name); ❽

 strcpy(f->path,dirpath); ❾

 f->next = NULL; ❿
 }
 }

 closedir(dp);

 if(chdir(parentpath)==-1)
 {
 if(parentpath==NULL)
 return;
 fprintf(stderr,"Parent directory lost\n");
 exit(1);
 }
}

❶ Obtains the current directory—unchanged

❷ Tests for a subdirectory and recursion

❸ If not a subdirectory, saves the file information

❹ Allocates the next node in the linked list (and does error checking)

❺ Saves the current index value

❻ References the freshly allocated node

❼ Updates the index value

❽ Saves the filename

❾ Saves the pathname

❿ Initializes the next pointer; the rest of the function is the same as the preceding examples.

The find() function makes a simple decision based on
whether a directory entry is a subdirectory or a file. When a
subdirectory is found, the function is recursively called.
Otherwise, a new node in the linked list is allocated and the
file entry information is recorded.

The full source code for finddupe01.c can be found in the
online repository. Here is output from sample run in my
working directory:

1:/Users/Dan/code/11_filefind/.finddupe01.c.swp
2:/Users/Dan/code/11_filefind/a.out
3:/Users/Dan/code/11_filefind/finddupe01.c
4:/Users/Dan/code/11_filefind/finddupe02.c
5:/Users/Dan/code/11_filefind/finddupe03.c
6:/Users/Dan/code/11_filefind/finddupe04.c
7:/Users/Dan/code/11_filefind/finddupe05.c
8:/Users/Dan/code/11_filefind/findfile01.c
9:/Users/Dan/code/11_filefind/findfile02.c
10:/Users/Dan/code/11_filefind/glob01.c
11:/Users/Dan/code/11_filefind/glob02.c
12:/Users/Dan/code/11_filefind/sto/findword01.c
13:/Users/Dan/code/11_filefind/sto/findword02.c

The output was able to record files from the current
directory as well as the sto subdirectory. However, when I
changed to the parent directory (code) and ran the
program again, the output didn’t change. It should: my
code directory has over 100 files in various subdirectories.
So why was the output unchanged?

I puzzled over the bug with the assistance of my cat, trying
to discover the solution. After a few purrs, it occurred to
me: the problem is the recursive function, which should
have been my first clue.

When the find() function returns, or “unwinds,” the previous
value of pointer f is used—not the newly allocated value in
the recursive call. Each time the function changes to the
parent directory, the structures created in the linked list are
lost because pointer f is reset to the original value passed
to the function. Ugh.

Fortunately, the solution is simple: return pointer f.

Updating the code requires only three changes and one
addition. First, the find() function’s data type must be
changed from void to struct finfo*:

struct finfo *find(char *dirpath, char *parentpath, struct finfo *f)

Second, the recursive call must capture the function’s
return value:

f = find(subdirpath,dirpath,f);

Effectively, this change updates pointer f to reflect its new
value after the recursive call.

Third, the return statement in the error check for the
chdir() function must specify the value of variable f:

return(f);

And finally, the find() function must have a statement at the
end to return the value of pointer f:

return(f);

These updates are found in the source code file
finddupe02.c in the online repository.

Upon building the code, the program accurately scans
subdirectories—and retains the linked list when it changes
back to the parent directory. The output is complete and

accurate: a record is made via a linked list of all files found
in the current directory as well as its subdirectories.

11.3.2 Locating the duplicates

The purpose of creating a linked list in the Find Dupe
program is to find duplicates. At some point, the list must
be scanned and a determination made as to which
filenames are repeated and in which directories the
duplicates are found.

I thought of several ways to accomplish this task. Most of
them involved creating a second list of filenames. But I
didn’t want to build list after list. Instead, I added a new
member to the finfo structure, repeat, as shown in this
updated structure definition:

struct finfo {
 int index;

 int repeat; ❶
 char name[BUFSIZ];
 char path[PATH_MAX];
 struct finfo *next;
};

❶ New member to track repeated filenames

The repeat member tracks how many times a name
repeats. Its value is initialized to one in the find() function
as each node is created. After all, every filename found
exists at least once.

To track repeated filenames, the repeat member is
incremented as the list is scanned after its creation. In the

main() function, a nested loop works like a bubble sort. It
compares each node in the list sequentially with the rest of
the nodes.

To perform the second scan, I need another struct finfo
variable declared in the main() function. This variable,
*scan, is used in addition to *first and *current to
scan the linked list:

struct finfo *first,*current,*scan;

The nested while loop is added just before the while loop
that outputs the list. This nested loop uses the *current
pointer to process the entire linked list. The *scan pointer
is used in an inner while loop to compare the current-
>name member with subsequent name members. When a
match is found, the current->repeat structure member
for the file with the repeated name is incremented, as
shown here.

Listing 11.8 The nested while loops added to the main() function in

finddupe03.c

current = first;

while(current) ❶
{

 if(current->index > 0) ❷
 {

 scan = current->next; ❸

 while(scan) ❹
 {

 if(strcmp(current->name,scan->name)==0) ❺
 {

 current->repeat++; ❻

 }

 scan = scan->next; ❼
 }
 }

 current = current->next; ❽
}

❶ Loops through the list until the value of current is NULL

❷ Skips the first, empty entry

❸ Obtains the address of the next entry, where the scanning starts

❹ Loops until scan references the final (NULL) node in the list

❺ Compares the filenames

❻ If the names are identical, increments the repeat counter for the current entry

❼ Continues the scan

❽ Continues incrementing through the entire list, comparing each node with the rest of the

list

These nested loops update the repeat member of
structures containing identical filenames. They’re followed
by the existing while loop that outputs the list. The printf()
statement in that second loop is updated to output the
repeat value:

printf("%d:%s/%s (%d)\n",
 current->index,
 current->path,
 current->name,
 current->repeat
);

All these changes are found in the finddupe03.c source
code file, available in the online repository. The output
doesn’t yet show duplicate files. This incremental
improvement to the Find Dupe series of source code files

merely outputs the same, full file list, but with the number
of repeats shown at the end of the file pathname string:

163:/Users/Dan/code/sto/secret01.c (1)

The next update to the Find Dupe program is found in
source code file finddupe04.c. Obtain this source code
file from the online repository, and display it in an editor.
Follow along with the text to review the two improvements
I’ll make.

First, a new int variable found is declared in the main()
function, up top where I prefer to set my variable
declarations:

int found = 0;

When a repeating filename is discovered in the nested while
loops, the value of found is reset to 1:

if(strcmp(current->name,scan->name)==0)
{
 current->repeat++;
 found = 1;
}

The value of found need not accumulate; it’s effectively a
Boolean variable. When it stays at 0, no duplicate filenames
are found and the following statements are executed:

if(!found)
{
 puts("No duplicates found");

 return(1);
}

The “No duplicates found” message is output, then the
program exits with a return value of 1.

When the value of found has been reset to 1, duplicate
filenames are detected. The second while loop in the main()
function proceeds to process the list. This loop is updated to
catch and output the repeats, as illustrated in the following
listing. Again, the *scan variable is used in a nested while
loop, but this time to output duplicate filenames and their
pathnames.

Listing 11.9 A second nested while loop in the main() function in

finddupe04.c

current = first; ❶
while(current)
{
 if(current->index > 0)
 {

 if(current->repeat > 1) ❷
 {

 printf("%d duplicates found of %s:\n", ❸
 current->repeat,
 current->name
);

 printf(" %s/%s\n", ❹
 current->path,
 current->name
);

 scan = current->next; ❺
 while(scan)
 {
 if(strcmp(scan->name,current->name)==0)
 {
 printf(" %s/%s\n",
 scan->path,
 scan->name

);
 }
 scan = scan->next;
 }
 }
 }
 current = current->next;
}

❶ Churns through the entire list of files just as before

❷ Looks for items with a repeat count higher than 1

❸ Outputs the number of duplicates for the given filename

❹ Outputs the current filename and its path

❺ Starts the nested loop to output the names and paths of matching filenames

This update to the code in finddupe04.c outputs a
shorter list, showing only those repeated filenames, plus
listing all the duplicate names and their paths.

For example, in my programming tree, I see five duplicates
of the a.out file in the program’s output:

5 duplicates found of a.out:
 /Users/Dan/code/a.out
 /Users/Dan/code/communications/a.out
 /Users/Dan/code/communications/networking/a.out
 /Users/Dan/Tiny C Projects/code/08_unicode/a.out
 /Users/Dan/Tiny C Projects/code/11_filefind/a.out

The problem is that the duplicates also show duplicates. So,
the output continues for the same filename as follows for
multiple occurrences of the a.out file:

4 duplicates found of a.out:
 /Users/Dan/code/communications/a.out
 /Users/Dan/code/communications/networking/a.out
 /Users/Dan/Tiny C Projects/code/08_unicode/a.out
 /Users/Dan/Tiny C Projects/code/11_filefind/a.out
3 duplicates found of a.out:

 /Users/Dan/code/communications/networking/a.out
 /Users/Dan/Tiny C Projects/code/08_unicode/a.out
 /Users/Dan/Tiny C Projects/code/11_filefind/a.out

This output is inefficient because it repeatedly lists the
duplicates. The reason is that the repeat member for
repeated filename structures in the linked list is greater
than 1. Because this value doesn’t change when the first
repeated filename is output, the code catches all the
duplicates.

This problem frustrated me because I didn’t want to create
yet another structure member nor did I want to return to
rehab. My goal is to avoid exceptions in an already complex,
nested while loop.

I stewed over this problem for a while, but eventually
inspiration hit me, and a one-line solution presented itself:

scan->repeat = 0;

This single statement is added to the second nested while
loop, shown in listing 11.9. It appears after the matching
filename is detected:

while(scan)
{
 if(strcmp(scan->name,current->name)==0)
 {
 printf(" %s/%s\n",
 scan->path,
 scan->name
);
 scan->repeat = 0;
 }
 scan = scan->next;
}

In the nested while loop, after the repeated filename is
output, its repeat value is reset to 0. This change prevents
a repeated filename from appearing later in the output. This
change is available in the source code file finddupe05.c.

The Find Dupe program is complete: it scans the current
directory structure and lists matching filenames, showing
the full pathname for all duplicates.

Like all code, the Find Dupe series can be improved upon.
For example, the file’s size could be added to the finfo
structure. Filename matches and file size matches could be
output. And you could go whole hog and try to match file
contents as well. The basic framework for whatever system
you need is provided in the existing code. All that’s left is
your desire to improve upon it and the time necessary to
anticipate all those unexpected things that are bound to
happen along the way.

12 Holiday detector

No matter the time of year, it seems that a holiday looms on
the horizon. It could be a religious holiday, a national day,
or some other festive event. Many people may get the day
off from work to celebrate. For programmers, the holiday is
also a celebration but not from work: coders still code, but
it’s a more enjoyable experience because everyone else is
on vacation, which means fewer interruptions.

Your computer doesn’t care whether one day is a holiday.
It’s not being ignorant; it just doesn’t know. To help the
computer understand which day is a holiday, and to help
you complete other programming projects that rely upon
knowing which days are holidays, you must:

Understand how the operating system uses return
values

Work with date programming in C

Review major holidays

Calculate regular holidays

Deal with irregular holidays

Figure out when Easter occurs
Put your holiday function to the test

These tasks help build routines that detect and report on
holidays given a specific day of the year. Such a utility isn’t

specifically useful by itself, but it does come into play when
programming dates or performing other tasks where
knowing when a holiday occurs is important. For example, I
wrote a stock tracker where it was useful to know which
days not to fetch the stock data because the markets are
closed. And my trash pickup reminder shell script uses my
holiday program to see whether trash day has shifted.

The routines presented in this chapter also play a role in the
calendar programs introduced in chapter 13.

12.1 The operating system wants its vig

Ever wonder why main() is an integer function? Years ago,
C programmers freely declared it a void function.
Scandalous! Old programmers may still pull a void main()
in their code. Goodness, even the first edition of the
venerable K&R—The C Programming Language (Prentice-
Hall)—didn’t even bother to cast the main() function. Try
not to work yourself into a tizzy.

The reason the main() function is cast as an int is that it
must return a value to the operating system. Like any loan
shark, when the operating system releases some of its
resources (memory and processor time) to another
program, it wants something in return, such as the interest
—vigorish, or “vig.” That something is an integer value. This
value is often ignored (just don’t miss a payment), or it’s
used in some clever and innovative way. Either way, the
value is required.

12.1.1 Understanding exit status versus the

termination status

More than one way exists to stop a program. The natural
way is for the program to end normally, with a return
statement at the end of the main() function passing its
value back to the operating system. This value is officially
known as the program’s exit status.

If the program stops before the main() function exits, it has
a termination status. For example, an exit() statement
nestled in a function other than main() halts a program. In
this case, the value that exit() passes to the operating
system is known as the termination status.

Termination status. Exit status. Yes, the nerds love to pick
nits. The point is that the way the program quits affects
how the value returned is interpreted. Many functions that
spawn other programs (processes) use a termination status
and not an exit status. The termination status is typically 0
for success or -1 otherwise. This value is different from
whatever the exit status might be. Be aware of this
difference as you code your programs, and especially if you
choose to dialogue with nerds.

12.1.2 Setting a return value

The return statement in the main() function is responsible
for sending a value back to the operating system. Sending
an integer value up to the mothership is vital for the main()

function: miss it, and the compiler points its bony finger at
you and shrieks like Donald Sutherland at the end of
Invasion of the Body Snatchers.

The next listing shows the source code for return01.c.
This program has only one job: to return a value to the
operating system. If the value isn’t specified as a
command-line argument, zero is returned.

Listing 12.1 Source code for return01.c

#include <stdlib.h> ❶

int main(int argc, char *argv[])
{

 if(argc>1) ❷
 {

 return(strtol(argv[1],NULL,10)); ❸
 }
 else
 {

 return(0); ❹
 }
}

❶ The stdio.h header isn’t required because no I/O functions are used in the code.

❷ If a command-line option is present, tries to convert it into an integer

❸ Returns the conversion of string argv[1] into an integer (long) value

❹ When no argument is present, returns zero

The strtol() function in return01.c converts the string
held in argv[1], the first argument at the command
prompt, into an integer value, base 10. If the string can’t be
converted (it contains no digits), the value 0 is returned.

The program surrenders its value via the return statement.
The exit() function could also be used, but this value is an
exit status, not a termination status. (I wrote that for the
nerds; don’t worry about the difference here.)

Here is a sample run:

Yes, the code lacks output, even when you specify an
argument. And, yes, the value returned is consumed by the
operating system. It’s available for the shell to interpret.
Despite being a loan shark, the operating system rarely if
ever does anything with a program’s return value. This job
can be done by other programs, but specifically the exit
status is available for use by shell scripts.

12.1.3 Interpreting the return value

The value a program poops out is left on the operating
system’s doorstep. Though nothing needs to be done with
the value, it remains available for the shell to use—until
another program deposits another value.

To demonstrate how the return value is accessed from the
shell, rerun the program for return01.c:, type the
program name, assumed to be return01, and a value as an
argument, such as:

$./return01 27

The program returns the value 27 to the operating system.
This value is accessed via the shell scripting variable $?. To

see it, type the echo command followed by $?:

$ echo $?
27

Shell scripts can use this value to determine the result of
some operation. Alas, in Linux it’s difficult for a non-shell
script program to read the return value of another program
it spawns. Such a task is possible, and I could so easily get
sidetracked to describe the thrilling details, but it’s beyond
the scope of this chapter.

The source code for return02.c in the following listing
attempts to capture the value returned from the return01
program. The system() function is used to execute return01
with a return value of 99. The purpose of the program is to
show how the system() function doesn’t capture a
program’s return value.

Listing 12.2 Source code for return02.c

#include <stdio.h>
#include <stdlib.h>

int main()
{
 int r;

 r = system("./return01 99"); ❶

 printf("The return value is %d\n",r); ❷

 return(r);
}

❶ Runs the return01 program and sets a return value of 99

❷ Reports the value returned by the system() function

The system() function’s single argument is something you
would type at the command prompt. The function can
return a variety of values, though if the call is successful,
the value returned is the termination status of the shell
launched to run the program. The value is not the return
value of the program run. Here’s a sample run:

The return value is 25344

After running the system() function, the shell returns the
value 25344 to the operating system.

In Windows, the system() function works differently. Unlike
with Linux, it returns the value generated by any program
run. Here’s sample output of the same code built in
Windows, with the option 99 specified:

The return value is 99

As an old MS-DOS/Windows coder, I remember using this
trick with the system() function ages ago in various
programs. Because system() behaves differently in Linux,
relying upon the function to report a program’s return value
isn’t anything you should do.

Yes, I know: the system() function in Linux does, in fact,
return the exit status of the program run—the shell. The
point I’m making is that the function can’t be used to
examine another program’s return value.

Other functions that spawn a process—fork(), popen(), and
so on—behave similarly to system(): the program spawned

may generate an exit status, but this value isn’t reported by
the function making the call.

As I wrote earlier, it’s possible to spawn a process and
capture its return value. If you’re curious to know the
procedure, visit my blog and search for the wait() function:
https://c-for-dummies.com/blog.

12.1.4 Using the preset return values

The C overlords want you to know that an exit status of 0
indicates success; everything went as planned. An exit
status of 1 means something went wrong. I use this
consistency in my code, but don’t use the defined constants
available in the stdlib.h header file:

EXIT_FAILURE
EXIT_SUCCESS

These two values are defined as 1 and 0 for failure and
success, respectively. The defined constants are consistent
—the same for all compilers and platforms.

The next listing shows the source code for return03.c,
which generates a random integer, 0 or 1. This value is used
to determine which defined constant is returned as an exit
status: EXIT_FAILURE or EXIT_SUCCESS.

Listing 12.3 Source code for return03.c

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

https://c-for-dummies.com/blog/

int main()
{
 int r;

 srand((unsigned)time(NULL)); ❶

 r = rand() % 2; ❷

 if(r) ❸
 {

 fprintf(stderr,"Welp, this program screwed [CA]up!\n"); ❹
 return(EXIT_FAILURE);
 }
 else
 {

 printf("Everything went ducky!\n"); ❺
 return(EXIT_SUCCESS);
 }
}

❶ Seeds the randomizer

❷ Generates a random value and stores it in r

❸ Uses r to test success (zero) or failure (one)

❹ Outputs the error to the standard error device—out of tradition

❺ The non-error message is sent to standard output.

The program’s output depends on the random number
generated. To confirm the value, you can use the $?
variable at the command prompt:

$./a.out
Welp, this program screwed up!
$ echo $?
1

And:

$./a.out
Everything went ducky!
$ echo $?
0

Remember, return values need not be limited to 0 and 1.
Many programs and utilities return different values, each of
which can be interpreted by a shell script to determine what
happened. The interpretation of these values is up to
whatever purpose the program has, to help it fulfill its
function.

12.2 All about today

Ages ago, US national holidays fell on specific days. I
remember, when I was young, getting to take off both
Lincoln’s birthday and George Washington’s birthday. As a
kid, I’d take two days off school in February over a Nintendo
Switch in a heartbeat.

Well, maybe not.

Before you can determine which day is a holiday, you need
a point of reference. That point is today, the current date
obtained from the operating system. Or you can backfill a
tm structure with any old date and work from there. Both
items are easy to obtain by invoking the proper C language
functions.

12.2.1 Getting today’s date

One of the hallmarks of the early PC era was the prompt:

The current date is: Tue 1-01-1980
Enter the new date: (mm-dd-yy)

MS-DOS didn’t know whether today was a holiday because
it didn’t even know which day it was! The user had to input
the current date. Eventually, technology was added to the
motherboard to retain the current date and time. This setup
is how modern computers work, but with the bonus of an
internet time server to keep the clock accurate. Your C code
can use this information to obtain the current date and time
—as it’s known to the computer.

The following listing shows the typical time code for the C
language. The current epoch value—the number of seconds
ticked since January 1, 1970—is obtained from the time()
function and stored in time_t variable now. This variable is
used in the localtime() function to fill a tm structure,
today. The tm structure’s members contain individual time
tidbit values, which are output.

Listing 12.4 Source code for getdate01.c

#include <stdio.h>
#include <time.h>

int main()
{
 time_t now;
 struct tm *today;
 int month,day,year,weekday;

 now = time(NULL); ❶

 today = localtime(&now); ❷

 month = today->tm_mon+1; ❸
 day = today->tm_mday;
 weekday = today->tm_wday;

 year = today->tm_year+1900; ❹

 printf("Today is %d, %d %d, %d\n", ❺

 weekday,
 month,
 day,
 year
);

 return(0);
}

❶ Obtains the number of seconds elapsed since January 1, 1970—the Unix epoch

❷ Fills the tm structure today with time tidbits

❸ The tm_mon member starts with 0 for January.

❹ The tm_year member starts with 1901.

❺ Outputs the values obtained from the tm structure

This code’s approach should be familiar to you if you’ve
written any time-related programs. The output shows the
current date in this format:

Today is 1, 12 6, 2021

Of course, the output could be made readable by a human.
Unless you’re a true nerd you may not recognize “1” as the
value for Monday.

EXERCISE 12.1

Update the code for getdate01.c to output strings for the
days of the week and months. This improvement requires
adding two string arrays to the code and other updates,
including to the printf() function.

My solution is available in the online repository as
getdate02.c. Please try this exercise on your own before

you see how I did it. Comments in my code explain what’s
going on—including an important point you will probably
forget.

12.2.2 Obtaining any old date

The time() function obtains the current time, a time_t value
containing the number of seconds elapsed from January 1,
1970. This value is useless by itself, which is why functions
like localtime() help sort out the details for you. But what
about dates other than today?

It’s possible to backfill a tm structure. You assign values to
the various members, then use the mktime() function to
translate these time tidbits into a time_t value. Further, the
mktime() function fills in unknown details for you, such as
the day of the week. This information is vital if you plan to
determine upon which date a holiday falls.

Here is the man page format for the mktime() function:

time_t mktime(struct tm *tm);

The function is passed the address of a partially filled tm
structure. A time_t value is returned, but more importantly,
the rest of the tm structure is filled with key details.

The mktime() function is prototyped in the time.h header
file.

As a quick reference, table 12.1 shows the common
members of a tm structure.

Table 12.1 Members of the tm structure

Member References Range/Notes

tm_sec Seconds 0 to 60 (60 allows for a leap second)

tm_min Minutes 0 to 59

tm_hour Hours 0 to 23

tm_mday Day of the

month

1 to 31

tm_mon Month 0 to 11

tm_year Year Current year minus 1900

tm_wday Day of the

week

0 to 6, Sunday to Saturday

tm_yday Day of the

year

0 to 365; zero is January 1

tm_isdst Daylight

saving time

Positive values indicate daylight saving time; zero

indicates not; negative values indicate that the

data is unavailable

Say you want to find out the day of the week for April 12,
2022. The code shown in the next listing attempts to do so
by filling in three members of the tm structure: tm_mon,
tm_day, and tm_year. Adjustments are made for the
tm_mon member, which uses zero for January, and the
tm_year member, which starts its count at 1900. A printf()
statement outputs the result in mm/dd/yyyy format, which
also accesses the newly filled tm_wday member to output
the day of the week string.

Listing 12.5 Source code for getdate03.c

#include <stdio.h>
#include <time.h>

int main()
{
 struct tm day;
 const char *days[] = {
 "Sunday", "Monday", "Tuesday", "Wednesday",
 "Thursday", "Friday", "Saturday", "Sunday"
 };

 day.tm_mon = 4-1; ❶

 day.tm_mday = 12; ❷

 day.tm_year = 2022-1900; ❸

 mktime(&day); ❹

 printf("%02d/%02d/%04d is on a %s\n", ❺
 day.tm_mon+1,
 day.tm_mday,
 day.tm_year+1900,
 days[day.tm_wday]
);

 return(0);
}

❶ I use this format because 0 is January, so 4 (April) minus 1 prompts me to double-check.

❷ The 12th day of the month

❸ This format makes the date I want, 2022, readable.

❹ Converts the partially filled tm structure

❺ Outputs the results

Here is the program’s output:

09/11/0122 is on a Tuesday

Alas, September 11 in the year 122 wasn’t expected,
whether or not it’s a Tuesday. That is the output from my

Linux machine. On the Macintosh, I saw this output:

08/22/5839 is on a Thursday

Curiously, August 22 in the year 5839 is on a Thursday. The
computer is amazing, not only to know the exact date, but
that our reptilian overlords will continue to use the common
calendar. Obviously, something went wrong. These types of
bugs are frustrating, especially when the code cleanly
compiles.

The issue is that the tm structure contains garbage that’s
misinterpreted or conflicting with the three values preset.
My solution is to also set the values for hour, minute, and
second members, adding the following three lines to the
code just below the statements where the day, month, and
year are set:

day.tm_hour = 0;
day.tm_min = 0;
day.tm_sec = 0;

This change is found in the source code file getdate04.c,
available in the online repository. When built, here is the
output:

04/12/2022 is on a Tuesday

I used a greasy old garage calendar to confirm that, indeed,
April 12, 2022, is a Tuesday.

The lesson learned is that you can obtain details about a
date if you know the month, day, and year, by filling the six
tm structure members, as outlined here, and calling the
mktime() function. Yet even then, you may get the wrong
date.

12.3 Happy holidays

It seems like every day is a holiday, a feast day, a saint’s
day, or a day of proclamation for this or that cause,
celebrity, hero, or historic figure. You’ve seen the hairspray
dolls on local TV cheerfully announce, “Well, today is
National Hoot Like an Owl Day . . .” or some such nonsense.
Such filler is possible because every day is some sort of
celebration—and it’s a slow news day.

For purposes of this chapter, a holiday must be a big deal,
such as a national holiday when everyone gets the day off.
My personal indication of a major holiday is when the mail
doesn’t come. Excluding every Sunday, these holidays are
few, typically one a month. This is the type of holiday I
want my holiday detector to report, though you’re free to
modify the code to list any holiday—including every Sunday.

12.3.1 Reviewing holidays in the United States

The United States have a smattering of holidays, though not
every national holiday is a day off for everyone. Instead, I
consider the specific holidays shown in table 12.2. For these
holidays, most people have the day off, government offices

are closed, banks are closed, school is out, the mail doesn’t
come, and people don’t bother me as much with phone calls
and email.

Table 12.2 US national holidays

Holiday Date Notes

New Year’s Day January 1 Friday/Monday holiday when

this holiday occurs on a

weekend.

Martin Luther King Jr.

Day

Third Monday of

January

Washington’s

Birthday

Third Monday of

February

Unofficially called Presidents

Day.

Easter Sunday in March or

April

Calculation is made on the

lunar calendar, so it varies.

Memorial Day Last Monday of May

Juneteenth June 19 Friday/Monday holiday when

this holiday occurs on a

weekend.

Independence Day July 4 Friday/Monday holiday when

this holiday occurs on a

weekend.

Labor Day First Monday of

September

Columbus Day Second Monday of

October

Also celebrated as Indigenous

Peoples’ Day. Not every

government office is closed.

Veterans Day November 11 Friday/Monday holiday when

this holiday occurs on a

weekend.

Thanksgiving Fourth Thursday of

November

Christmas December 25 Friday/Monday holiday when

this holiday occurs on a

weekend.

Some holidays, such as Independence Day and Christmas,
are specific to a day and date, though the holiday is often
observed on the Friday or Monday after it falls on a

weekend. Other holidays float based on the week of the
month or other factors, as noted in table 12.2.

When calculating a holiday, you can set two dates: the
holiday’s actual date and the date on which the holiday is
observed. Most calendars I’ve seen show both, such as
Christmas and Christmas Observed. Adding such
programming is shown later in this chapter, such as when a
holiday falls on a Sunday and the celebration is on Monday.

12.3.2 Discovering holidays in the UK

As one of the rebels, I have no idea which days are
celebrated as holidays in the United Kingdom—or any other
country, for that matter. From Dickens, I know that
Christmas is a thing in England, at least. I doubt the British
celebrate George Washington’s birthday—well, perhaps not
the way we do in the States. The rest of the UK holidays
seem to be bank holidays, most likely celebrating the
greatest banks in Britain. Even people who don’t work in a
bank get the day off, supposedly.

Table 12.3 lists UK national holidays as reported by the
internet. Only three of them are tied to a specific date: New
Year’s Day, Christmas, and Boxing Day. If any of these
holidays falls on Saturday or Sunday, the day off is the
following Monday. If Christmas or Boxing Day takes place
on the weekend, it’s possible to see both Monday and
Tuesday off, frequently with Tuesday as the day off for
Christmas, for some reason.

Table 12.3 UK national holidays

Holiday Date

New Year’s Day January 1

Good Friday Friday before Easter

Easter Monday Monday after Easter

Early May Bank Holiday First Monday of May

Spring Bank Holiday Last Monday of May

Summer Bank Holiday Last Monday of August

Christmas Day December 25

Boxing Day December 26

The Easter holiday floats depending on when Easter falls.
You must use an algorithm to calculate these holidays:
Easter and Good Friday. Such code is presented later in this
chapter.

Don’t worry, my English, Irish, Scottish, and Welsh friends:
I shan’t be writing any code to detect holidays in the UK.
That’s your job. Given the information presented in this
chapter, the task is quite doable.

12.4 Is today a holiday?

Humans enjoy plenty of clues about impending holidays. For
example, every August, shoppers at Costco are thrilled to
see Christmas decorations up for sale. And who can forget
early March with all the green shamrocks and cheery
leprechauns reminding us of Easter? These cultural clues

mean nothing to a computer—unless you, the programmer,
are willing to help.

For a computer holiday detector, three timely tidbits are
necessary:

The month number

The day of the month
The day of the week

With these three items known, it’s possible for a computer
to identify a date as a holiday.

For the remainder of this chapter, I use holidays in the
United States. The same techniques demonstrated can also
be used to detect holidays in other countries, providing they
follow a consistency on the solar calendar. I don’t cover how
to map lunar holidays to solar holidays, except for Easter
later in this chapter.

12.4.1 Reporting regular date holidays

The easiest holidays to report are the predictable ones—
what I call the regular date holidays. Each of these is fixed
to a specific month and day:

New Year’s Day, January 1

Juneteenth, June 19

Independence Day, July 4

Veterans Day, November 11

Christmas Day, December 25

To report these dates, I use the isholiday() function. Here’s
the prototype:

int isholiday(struct tm *d)

The function’s only argument is the address of a tm
structure, the same structure returned from the localtime()
function and used by the mktime() function. Reusing this
structure is convenient for this stage in the isholiday()
function’s evolution.

The isholiday() function shown next returns an integer
value: 0 for nonholiday days and 1 for a holiday. The
function does a straight-up comparison of month-and-day
values to report the regular date holidays, as shown in the
listing. Please note that the month values used start with
zero for January.

Listing 12.6 The isholiday() function

int isholiday(struct tm *d)
{

 if(d->tm_mon==0 && d->tm_mday==1) ❶
 return(1);

 if(d->tm_mon==5 && d->tm_mday==19) ❷
 return(1);

 if(d->tm_mon==6 && d->tm_mday==4) ❸
 return(1);

 if(d->tm_mon==10 && d->tm_mday==11) ❹
 return(1);

 if(d->tm_mon == 11 && d->tm_mday == 25) ❺

 return(1);

 return(0);
}

❶ New Year’s Day

❷ Juneteenth

❸ Independence Day

❹ Veterans Day

❺ Christmas

The main() function calls the time() and localtime()
functions to obtain the current time info and pack it into the
tm structure. This structure is passed to isholiday() and the
results reported. You can find the full source code at the
online repository as isholiday01.c. Here is a sample
run:

Today is 12/09/2021, not a holiday

For my first update to the isholiday() function, I’d like the
function to report the holiday’s name. To make this
improvement, the tm structure must be ditched as the
isholiday() function’s argument. Instead, I use a new
structure holiday, defined with these members:

struct holiday {
 int month;
 int day;
 char *name;
};

The month and day members match up to the tm_mon and
tm_mday members of the tm structure. The name member

is a char pointer to hold the holiday’s name. The strings
assigned to this pointer are declared in the isholiday()
function, as shown in the following listing. There you also
see the updates to each if decision, which now assigns the
name member of the holiday structure passed.

Listing 12.7 The isholiday() function updated to return the holiday

name

int isholiday(struct holiday *h) ❶
{

 char *n[] = { ❷
 "New Years Day",
 "Juneteenth",
 "Independence Day",
 "Veterans Day",
 "Christmas"
 };

 if(h->month==0 && h->day==1)
 {

 h->name = n[0]; ❸

 return(1); ❹
 }

 if(h->month==5 && h->day==19) ❺
 {
 h->name = n[1];
 return(1);
 }

 if(h->month==6 && h->day==4)
 {
 h->name = n[2];
 return(1);
 }

 if(h->month==10 && h->day==11)
 {
 h->name = n[3];
 return(1);
 }

 if(h->month== 11 && h->day == 25)

 {
 h->name = n[4];
 return(1);
 }

 return(0); ❻
}

❶ The holiday structure must be passed as a pointer because the name member is

modified within this function.

❷ Strings assigned to holidays in chronological order

❸ Assigns the name member

❹ Returns 1 for a true holiday

❺ The pattern is repeated for each of the five holidays.

❻ Returns 0 when the date isn’t a holiday

The main() function is also updated to assign values to the
holiday structure declared there. The output statements
are also modified to output the named holiday. For
example:

Today is 12/25/2021, Christmas

The full source code for this update is found in the online
repository as isholiday02.c.

The holidays detected so far are absolute. If you were
creating a calendar (see chapter 13) and you wanted to
color-code the holidays red, the isholiday() function
properly reports the values. But if you wanted to note when
the holiday is observed, more coding is necessary.

Specifically, when one of these holidays falls on a weekend,
it’s often the Friday before or the Monday after that
everyone takes a day off: when Independence Day (July 4)

is on a Sunday, the country takes off Monday, July 5.
Though when this type of holiday falls on a Tuesday,
Wednesday, or Thursday, the day before or after isn’t
considered a holiday, even though some people, mostly the
lazy, take additional days.

To update the code for isholiday02.c, and to improve
the isholiday() function, some changes are in order. These
changes account for those times when the holiday falls on a
weekend.

First comes an update to the holiday structure, which
adds a new member, wday. This member echoes the
tm_wday member of the tm structure. It indicates a day of
the week—0 for Sunday through 6 for Saturday. Here is the
updated definition:

struct holiday {
 int month;
 int day;
 int wday;
 char *name;
};

Because only two days are required for testing, I also added
two defined constants:

#define FRIDAY 5
#define MONDAY 1

When New Year’s Day is observed on a Friday, the date is
December 31 of the prior year. This difference makes the
New Year’s Day test a bit more complex than the other

Friday/Monday tests. The next listing shows the code
necessary to make the New Year’s Day test, which isn’t as
elegant as the other holiday tests due to the year-before
overlap.

Listing 12.8 Statements to detect New Year’s Day and any

Friday/Monday celebrations

if(h->month==11 && h->day==31 && h->wday==FRIDAY) ❶
{
 h->name = n[0];

 return(2); ❷
}

if(h->month==0 && h->day==1) ❸
{
 h->name = n[0];

 return(1); ❹
}

if(h->month==0 && h->day==2 && h->wday==MONDAY) ❺
{
 h->name = n[0];

 return(2); ❻
}

❶ Specifically checks for Friday, December 31

❷ Returns 2 for “celebration” holidays

❸ Checks for New Year’s Day

❹ Returns 1 for the real holiday

❺ Specifically checks for Monday, January 2

❻ Returns 2 for “celebration” holidays

The new return code from the isholiday() function is 2, as
shown in listing 12.8. This value is handled uniquely in the
main() function, which is found in the complete update
source code file, isholiday03.c. Here is a sample run for
a nonholiday:

Today is 12/09/2021, not a holiday

And for a holiday:

Today is 12/25/2021, Christmas

And a Monday holiday:

Today is 12/26/2022, Christmas observed

In the code, however, I notice something that bothers me:
After New Year’s Day is determined, the next four holidays
all share similar statements. For example, the construction
for Juneteenth is shown in the next listing. The structure of
this code matches the structure used to test for the next
three holidays. All that changes are the specific day values.
That’s a lot of repetitious code.

Listing 12.9 Statements to detect Juneteenth and other holidays

if(h->month==5) ❶
{

 if(h->day>17 && h->day<21) ❷
 {

 if(h->day==18 && h->wday==FRIDAY) ❸
 {
 h->name = n[1];

 return(2); ❹
 }

 if(h->day==20 && h->wday==MONDAY) ❺
 {
 h->name = n[1];

 return(2); ❻
 }

 if(h->day==19) ❼
 {
 h->name = n[1];

 return(1); ❽
 }
 }
}

❶ Juneteenth is always in June.

❷ Focuses on the relevant days, before (18), the day (19), and after (20)

❸ Checks for the day before celebration

❹ Returns 2 for celebration days

❺ Checks for the day after celebration

❻ Returns 2 for celebration days

❼ Checks for the actual holiday

❽ Returns 1 for the holiday

Whenever I see such repetition in my code, it cries out for a
function. The function I created is named weekend(). Here
is its prototype:

int weekend(int holiday, int mday, int wday)

The function has three arguments. Integer holiday is the
day of the month on which the holiday occurs. Integers
mday and wday are the day of the month and day of the
week values, respectively. These three items represent the
different values that change for each holiday test in the
isholiday() function from source code file isholiday03.c.

The following listing shows the weekend() function. It
contains most of the code shown in listing 12.9, the
statements that repeat, but is modified to use variables
instead of specific day-of-the-month values. This code
evaluates the days before and after the holiday, Friday and
Monday, to determine celebration days. The only item not

addressed in the function is the string assignment for the
holiday name.

Listing 12.10 The weekend() function from isholiday04.c

int weekend(int holiday, int mday, int wday)
{

 if(mday>holiday-2 && mday<holiday+2) ❶
 {

 if(mday==holiday-1 && wday==FRIDAY) ❷
 return(2);

 if(mday==holiday+1 && wday==MONDAY) ❸
 return(2);

 if(mday==holiday) ❹
 return(1);
 }

 return(0); ❺
}

❶ Narrows down the days to search

❷ Tests for the Friday before the holiday

❸ Tests for the Monday after the holiday

❹ Tests for the holiday date itself

❺ Returns zero for no matches

This function’s update is found in the online repository as
isholiday04.c. The isholiday() function is also updated
to account for passing most of the work to the weekend()
function. The code reads more cleanly than it did before.

Further improvements could be made to the isholiday()
function. But first, the irregular holidays must be dealt with.

12.4.2 Dealing with irregular holidays

Unlike specific date holidays, irregular holidays occur on
specific weeks and days of the month. The day is Monday,
save for Thanksgiving, which takes place on a Thursday.
These holidays are irregular in that they fall within a range
of dates each year, so the program must think harder about
when these holidays occur. As a review, here are the
irregular holidays in the United States:

Martin Luther King Jr. Day, third Monday of January

Presidents Day, third Monday of February

Memorial Day, last Monday of May

Labor Day, first Monday of September

Columbus Day, second Monday of October
Thanksgiving, fourth Thursday of November

Unlike the regular date holidays, you don’t need to worry
about a shifting observance day; these are all specific day-
of-the-week holidays. This consistency means that it’s
possible to calculate a day-of-the-month range for each
holiday. I’ve summarized the day ranges in table 12.4 for
weeks in a month.

Table 12.4 Day ranges for Monday holidays on a given week

Week of month Monday range

First 1 to 7

Second 8 to 14

Third 15 to 21

Fourth 22 to 28

Last 25 and higher

The difference between the fourth and last week occurs in
those months with five Mondays, such as May, shown in
figure 12.1: when the 31st of May falls on a Monday, it’s the
fifth Monday. The 24th of May is still in the fourth week
(refer to table 12.3), but in this month configuration, where
the 31st is on a Monday, it’s the last day. This reason is why
the last week has a different range than the fourth week.

Figure 12.1 A configuration of May, with five Mondays

For Thanksgiving, the final Thursday of the month could fall
on any day from the 22nd through the 28th. This value is
shown in the fourth row in Table 12.3, which also applies to
Thursdays.

The isholiday() function is nearly complete when these final,
irregular holidays are coded. To help do so, I created a few
macros and added the THURSDAY defined constant:

#define FRIDAY 5
#define MONDAY 1
#define THURSDAY 4
#define FIRST_WEEK h->day<8
#define SECOND_WEEK h->day>7&&h->day<15
#define THIRD_WEEK h->day>14&&h->day<22
#define FOURTH_WEEK h->day>21&&h->day<29
#define LAST_WEEK h->day>24&&h->day<32

The weekday holidays fall on Friday, Monday, or Thursday,
so the defined constants add readability to the code.

The macros shown here relate to the date values presented
in table 12.3. The variable h->day is used in the isholiday()
function. These macros add readability to the function. For
example, this code doesn’t use the macro:

if(h->day>14&&h->day<22)
{
 h->name = n[1];
 return(1);
}

But this code, which does the same thing as the previous
snippet, is far more readable:

if(THIRD_WEEK)
{
 h->name = n[1];
 return(1);
}

To avoid any confusion, the entire, updated code for the
isholiday() function is shown in the next listing. I recognize
that it’s a bit long, but it shows all the code to capture the
12 annual holidays in the United States, save for Easter,
which is covered in the next section. Aside from New Year’s

Day, pay attention to the patterns used for the regular and
irregular holidays. Not shown in the listing are the
weekend() and main() functions.

Listing 12.11 The isholiday() function

int isholiday(struct holiday *h)
{
 char *n[] = {
 "New Years Day",
 "Martin Luther King Day",
 "Presidents Day",
 "Memorial Day",
 "Juneteenth",
 "Independence Day",
 "Labor Day",
 "Columbus Day",
 "Veterans Day",
 "Thanksgiving",
 "Christmas"
 };
 int r;

 if(h->month==11 && h->day==31 && h->wday==FRIDAY) ❶
 {
 h->name = n[0];
 return(2);
 }
 if(h->month==0 && h->day==1)
 {
 h->name = n[0];
 return(1);
 }
 if(h->month==0 && h->day==2 && h->wday==MONDAY)
 {
 h->name = n[0];
 return(2);
 }

 if(h->month==0 && h->wday==MONDAY) ❷
 {
 if(THIRD_WEEK)
 {
 h->name = n[1];
 return(1);
 }
 }

 if(h->month==1 && h->wday==MONDAY) ❸
 {
 if(THIRD_WEEK)
 {
 h->name = n[2];
 return(1);
 }
 }

 if(h->month==4 && h->wday==MONDAY) ❹
 {
 if(LAST_WEEK)
 {
 h->name = n[3];
 return(1);
 }
 }

 if(h->month==5) ❺
 {
 r = weekend(19,h->day,h->wday);
 h->name = n[4];
 return(r);
 }

 if(h->month==6) ❻
 {
 r = weekend(4,h->day,h->wday);
 h->name = n[5];
 return(r);
 }

 if(h->month==8 && h->wday==MONDAY) ❼
 {
 if(FIRST_WEEK)
 {
 h->name = n[6];
 return(1);
 }
 }

 if(h->month==9 && h->wday==MONDAY) ❽
 {
 if(SECOND_WEEK)
 {
 h->name = n[7];
 return(1);
 }
 }

 if(h->month==10) ❾
 {
 r = weekend(11,h->day,h->wday);
 h->name = n[8];
 return(r);
 }

 if(h->month==10 && h->wday==THURSDAY) ❿
 {
 if(FOURTH_WEEK)
 {
 h->name = n[9];
 return(1);
 }
 }

 if(h->month==11) ⓫
 {
 r = weekend(25,h->day,h->wday);
 h->name = n[10];
 return(r);
 }

 return(0);
}

❶ New Year’s Day

❷ Martin Luther King Jr. Day

❸ Presidents Day

❹ Memorial Day

❺ Juneteenth

❻ Independence Day

❼ Labor Day

❽ Columbus Day

❾ Veterans Day

❿ Thanksgiving

⓫ Christmas

Here is a sample run of the program for a nonholiday:

Today is 2/20/2022, not a holiday

And for a holiday:

Today is 2/21/2022, Presidents Day

After testing this code more thoroughly, I discovered a flaw
for calculating Veterans Day and Thanksgiving, both of
which occur in November. Here is the relevant code chunk:

 if(h->month==10)
 {
 r = weekend(11,h->day,h->wday);
 h->name = n[8];
 return(r);
 }

 if(h->month==10 && h->wday==THURSDAY)
 {
 if(FOURTH_WEEK)
 {
 h->name = n[9];
 return(1);
 }
 }

The first if test captures all dates for November and returns.
This exit means that the next if test for November, h-
>month==10, never occurs. Oops.

To remedy the situation, a single if test must be done for
November. Then a test can be made for Thanksgiving and
then Veterans Day. Here is the udpated code:

if(h->month==10)
{
 if(h->wday==THURSDAY && FOURTH_WEEK)
 {
 h->name = n[9];
 return(1);
 }
 r = weekend(11,h->day,h->wday);

 h->name = n[8];
 return(r);
}

With this change made, the code now faithfully reports both
Thanksgiving and Veterans Day. All these updates and
additions are found in the full source code listing,
isholiday05.c, available in the online repository.

The only holiday left is the most difficult to calculate:
Easter.

EXERCISE 12.2

In a major update to the code, add constants for the
months of the year. Use these constants in the isholiday()
function so that this comparison

if(h->month==0 && h->wday==MONDAY)

now reads like this:

if(h->month==JANUARY && h->wday==MONDAY)

My solution is available in the online repository as
isholiday06.c. For bonus points, see if you can use
enumerated constants, which is what I did.

12.4.3 Calculating Easter

Easter falls on different dates each year because it’s the last
holiday remaining in Western culture based on the lunar

calendar. On the solar calendar, the date of Easter can be as
early as March 22 or as late as April 25. It’s always on a
Sunday.

For the lunar calendar, Easter is the first Sunday after the
first new moon after the vernal equinox. This date is based
on the Jewish holiday of Passover. So, first comes the spring
equinox, when the sun returns to the northern hemisphere
and Hades releases Persephone from the underworld. The
next full moon—which could be weeks away—must pass,
and then the following Friday is Passover with Easter falling
on Sunday.

In my original holiday-detector program, written years ago,
I hardcoded the date for Easter. It was easy but not a long-
lasting solution.

As with determining the moon phase (refer to chapter 2),
the date of Easter is best calculated by using an algorithm.
As with the moon algorithm, I have no idea what’s going on
with my Easter algorithm; I just copied it down. But unlike
the moon phase algorithm, the Easter algorithm is
extremely accurate.

Just a guess: a lot of what you see in the next listing deals
with mapping the moon’s cycle to the solar year, as well as
accounting for leap years. What a wonder! The value passed
to the easter() function represents a year. No value is
returned, because the function itself outputs the date of
Easter. Building this code requires inclusion of the math.h
header file, which implies that you link in the math library

for many platforms: use the -lm (little L) switch, specified
last when building at the command prompt.

Listing 12.12 The easter() function from source code file easter01.c

void easter(int year) ❶
{

 int Y,a,c,e,h,k,L; ❷

 double b,d,f,g,i,m,month,day; ❸

 Y = year; ❹
 a = Y%19;
 b = floor(Y/100);
 c = Y%100;
 d = floor(b/4);
 e = (int)b%4;
 f = floor((b+8)/25);
 g = floor((b-f+1)/3);
 h = (19*a+(int)b-(int)d-(int)g+15)%30;
 i = floor(c/4);
 k = c%4;
 L = (32+2*e+2*(int)i-h-k)%7;
 m = floor((a+11*h+22*L)/451);

 month = floor((h+L-7*m+114)/31); ❺

 day = ((h+L-7*(int)m+114)%31)+1; ❻

 printf("In %d, Easter is ",Y); ❼
 if(month == 3)
 printf("March %d\n",(int)day);
 else
 printf("April %d\n",(int)day);
}

❶ Accepts a year value as the only argument

❷ Lots of int variables

❸ Lots of double variables

❹ Math goes on for a while.

❺ Obtains the month for Easter, either 3 (March) or 4 (April)

❻ Obtains the day of the month

❼ Outputs results

The full source code file including the easter() function is
available in the online repository as easter01.c. What’s
missing from listing 12.13 is the main() function. It contains
a loop that calls the easter() function with year values from
2018 through 2035:

In 2018, Easter is April 1
In 2019, Easter is April 21
In 2020, Easter is April 12
In 2021, Easter is April 4
In 2022, Easter is April 17
In 2023, Easter is April 9
In 2024, Easter is March 31
In 2025, Easter is April 20
In 2026, Easter is April 5
In 2027, Easter is March 28
In 2028, Easter is April 16
In 2029, Easter is April 1
In 2030, Easter is April 21
In 2031, Easter is April 13
In 2032, Easter is March 28
In 2033, Easter is April 17
In 2034, Easter is April 9
In 2035, Easter is March 25

Merging the easter() into the isholiday() function requires
too much work. Instead, I sought to include easter() as a
companion function called by isholiday()—like the
weekend() function already in the code.

The easter() function must be modified to accept a date
value and return 1 or 0 depending on whether the date
matches Easter for the given year. To begin this journey, a
few changes are required to update the existing isholiday
code. First, the holiday structure must be modified to also
include a year member:

struct holiday {
 int month;
 int day;
 int year;
 int wday;
 char *name;
};

Second, the year member’s value must be assigned in the
main() function:

h.year = today->tm_yeari+1900;

Remember to add 1900 to the year value!

Third, a call must be made to easter() in the isholiday()
function. At the start of the function, a string for Easter is
added to the n[] pointer array. I chose to add the string at
the end, which doesn’t upset the existing array numbering
elsewhere in the function. The "Easter" string is last in
the array declaration, n[11].

These statements in the isholiday() function call the
easter() function. They are the last few statements in the
function, right before the final return:

r = easter(h);
if(r==1)
{
 h->name = n[10];
 return(r);
}

The next listing shows the updated easter() function,
changed to accommodate a holiday structure pointer as its

argument and to return 1 or 0, whether the current date is
or is not Easter, respectively.

Listing 12.13 The updated easter() function as it sits in source code

isholiday07.c

int easter(struct holiday *hday) ❶
{

 int Y,a,c,e,h,k,L; ❷
 double b,d,f,g,i,m,month,day;

 Y = hday->year;
 a = Y%19;
 b = floor(Y/100);
 c = Y%100;
 d = floor(b/4);
 e = (int)b%4;
 f = floor((b+8)/25);
 g = floor((b-f+1)/3);
 h = (19*a+(int)b-(int)d-(int)g+15)%30;
 i = floor(c/4);
 k = c%4;
 L = (32+2*e+2*(int)i-h-k)%7;
 m = floor((a+11*h+22*L)/451);

 month = floor((h+L-7*m+114)/31)-1; ❸
 day = ((h+L-7*(int)m+114)%31)+1;

 if(hday->month==month && hday->day==day) ❹

 return(1); ❺
 else

 return(0); ❻
}

❶ The function definition is changed, accepting structure pointer hday and returning an int

value.

❷ I couldn’t use variable h as the function’s argument because it’s already used in the

algorithm and I don’t want to mess with it.

❸ Subtracts one from the final month value because January is zero in this code

❹ Tests to see whether today is Easter

❺ Returns 1 if it is

❻ Returns 0 otherwise

Finally, remember to add the math.h header file so that the
compiler doesn’t barf over the floor() function used in the
easter() function. And ensure that when you build the code,
you link in the math library, -lm (little L). All these changes
and updates are found in the source code file
isholiday07.c, available from this book’s online
repository.

The code runs as it did before, but now it recognizes Easter.
Here is a sample run for Easter 2022:

Today is 4/17/2022, Easter

12.4.4 Running the date gauntlet

To test the isholiday() function, you must run it through the
date gauntlet. This test is how I refer to a program that
generates dates from January 1 through December 31 for a
given year. The goal is to ensure that the isholiday()
function properly reacts, reporting the national holidays.

The next listing shows the code for gauntlet01.c. It
contains two arrays of string constants to represent months
and days of the week. The mdays[] array lists the number
of days in each month, where it’s assumed the year isn’t a
leap year; February has only 28 days in the code. The dates
are output in a nested loop: the outer loop processes
months, and the inner loop churns days of the month.

Listing 12.14 Source code for gauntlet01.c

#include <stdio.h>

int main()
{
 const char *month[] = {
 "January", "February", "March", "April",
 "May", "June", "July", "August",
 "September", "October", "November", "December"
 };
 const char *weekday[] = {
 "Sunday", "Monday", "Tuesday", "Wednesday",
 "Thursday", "Friday", "Saturday"
 };

 int mdays[] = { 31, 28, 31, 30, 31, 30, 31, 31, ❶
 30, 31, 30, 31 };

 enum { SU, MO, TU, WE, TH, FR, SA }; ❷
 int start_day,dom,doy,year,m;

 start_day = SA; ❸

 doy = 1; ❹

 year = 2022; ❺

 for(m=0; m<12; m++) ❻
 {

 for(dom=1; dom<=mdays[m]; dom++) ❼
 {
 printf("%s, %s %d, %d\n",

 weekday[(doy+start_day-1) % 7], ❽
 month[m],
 dom,
 year
);

 doy++; ❾
 }
 }

 return(0);
}

❶ Determines days of each month, assuming it isn’t a leap year

❷ Shortcuts for January 1, starting day of the week

❸ Sets the starting day for 2022, Saturday

❹ The first day of the year

❺ The year to be output (not a leap year)

❻ Loops through 12 months of the year

❼ Loops through each day of the month

❽ Scary math to determine the proper day of the week

❾ Increments the day of the year

The math in the code determines the proper day of the
week. This detail is based on the start_day variable set to
the proper day of the week for January 1, which is a
Saturday—enumerated constant SA in the code. The day-of-
the-year variable, doy, is used in this calculation,
incremented in the inner loop to keep track of each day of
the year.

The source code for gauntlet01.c is available in the
online repository. Here is the abbreviated output:

Saturday, January 1, 2022
Sunday, January 2, 2022
Monday, January 3, 2022
Tuesday, January 4, 2022
...
Tuesday, December 27, 2022
Wednesday, December 28, 2022
Thursday, December 29, 2022
Friday, December 30, 2022
Saturday, December 31, 2022

These days all check out, matching up perfectly with the
date and day of the week for the year 2022. I changed
some of the variables in the code to test other years as
well, and it all works.

The next step is to add the functions isholiday(),
weekend(), and easter() to the code—the entire isholiday
package—to confirm that all holidays are properly tracked
throughout the year. As the gauntlet code churns through

days of the year, the isholiday() function is called. Only
holidays are output. As a review, here are the US national
holidays and their days and dates for 2022:

New Year’s Day: Saturday, January 1

Martin Luther King Jr. Day: Monday, January 17

Washington’s Birthday/Presidents Day: Monday,
February 21

Easter: Sunday, April 17

Memorial Day: Monday, May 30

Juneteenth: Sunday, June 19

Juneteenth observed: Monday, June 20

Independence Day: Monday, July 4

Labor Day: Monday, September 5

Columbus Day: Monday, October 10

Veterans Day: Friday, November 11

Thanksgiving: Thursday, November 24

Christmas: Sunday, December 25
Christmas Day observed: Monday, December 26

The update to the code is found in the online repository as
gauntlet02.c. It features only minor changes to the
main() function for output formatting. Remember that this
code requires linking of the math library, -lm (little L), so
that the math functions in Easter all behave well. Here is
the output:

Saturday, January 1, 2022 is New Years Day
Monday, January 17, 2022 is Martin Luther King Day
Monday, February 21, 2022 is Presidents Day
Sunday, April 17, 2022 is Easter
Monday, May 30, 2022 is Memorial Day
Sunday, June 19, 2022 is Juneteenth
Monday, June 20, 2022 Juneteenth is observed
Monday, July 4, 2022 is Independence Day
Monday, September 5, 2022 is Labor Day
Monday, October 10, 2022 is Columbus Day
Friday, November 11, 2022 is Veterans Day
Thursday, November 24, 2022 is Thanksgiving
Sunday, December 25, 2022 is Christmas
Monday, December 26, 2022 Christmas is observed

The isholiday() function can be incorporated into a variety
of your source code files, or you can make it its own module
to be linked in with special programs. This process is
reviewed in chapter 13, which covers outputting a colorful
calendar.

13 Calendar

It wasn’t just the Mayans who invented their own calendar.
Just about every early culture featured some form of
classification for the passage of days. The Mayans gained
notoriety in 2012 because it was the end of one of their
great calendrical cycles—the long count, or b’ak’tun. It
wasn’t the end of the world—more like turning the page on
one of those cheap insurance company calendars. Bummer.

Most cultures start with lunar calendars and eventually
switch to solar calendars, either fully or reluctantly. Hebrew,
Muslim, Eastern Orthodox, and Chinese calendars are still
used today, with different year values and lunar features.
Julius Caesar took a stab at updating the Roman calendar
system—before the Senate took various stabs at him. And
Pope Gregory introduced our modern calendar system in the
year 1582.

Even with calendar utilities handy, coding your own calendar
tools helps hone your time programming skills in C and
more. In this chapter, you learn to:

Appreciate the cal program

Calculate holidays

Code week, month, and year utilities

Output color text
Color-code important dates

Yes, Unix has featured the cal program since the steam-
powered days. Still, understanding date-and-time
programming is important for all C coders. By practicing on
these utilities, you can better code your own, custom date
programs. You can also use the techniques presented here in
any program that relies upon date calculations.

13.1 The calendar program

The calendar program developed for AT&T Unix (System V)
is called cal. Linux inherited this fine tool. The default
output, with no options specified, displays the current month
in this format:

$ cal
 December 2021
Su Mo Tu We Th Fr Sa
 1 2 3 4
 5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31

The current day is shown inverse, such as the 20th above.

You can follow cal with a year argument to obtain the full,
12-month calendar for the given year:

$ cal 1993

You can add a month argument to see the calendar for a
specific month in a specific year:

$ cal 10 1960

The month can be specified numerically or by name. To see
the next three months of output, specify the -A2 argument:

$ cal -A2

Like many classic Unix utilities, the cal program is burdened
with a plethora of easily forgettable options and
unmemorable switches.

The program’s output is consistent: the first row is the full
month name and full year. The next row is the weekday
header. The program then outputs six rows of text for the
calendar. When a month lacks a sixth week, the last row of
output is blank.

The only thing the cal program doesn’t do is output the
calendar sideways. This job is handled by the updated
version, the ncal program:

$ ncal
 December 2021
Su 5 12 19 26
Mo 6 13 20 27
Tu 7 14 21 28
We 1 8 15 22 29
Th 2 9 16 23 30
Fr 3 10 17 24 31
Sa 4 11 18 25

The advantage of the ncal program is that it outputs the
entire year in a grid four months wide, which makes it easier
to read on a text screen. The cal program uses a grid three
months wide when it outputs an entire year.

You could just use these utilities and go right along on your
merry Linux adventures, but then what do you learn?
Further, it’s possible to customize calendar output to
however you prefer. As with any programming project, the
possibilities are endless—providing that the caffeine and
chips don’t run out.

Calendar trivia

When Julius Caesar’s calendar was adopted in 46 BC, the year became 445 days

long. This change was to align the new calendar with the solar year. It became the

longest year in history.

English month names are derived from the old Roman calendar: Ianuarius

(January), Februarius (February), Martius (March), Aprilis (April), Maius (May), Iunius

(June), Quintilis (July), Sextilis (August), September, October, November, and

December.

Some religious ceremonies continue to be based on Julian calendar dates—

specifically, in the Eastern Orthodox Church.

When Pope Gregory adopted the current, Gregorian calendar in 1582, October 4

was immediately followed by October 15.

The effect of the Gregorian calendar’s adoption by Great Britain is reflected in the

cal program’s output for September 1752. Type cal 9 1752 to see a shortened

month as the old calendar was adjusted to the new.

Even with the improved Gregorian calendar, leap seconds are added to the year

every so often.

The number of times Friday falls on the 13th in a specific month varies from one to

three times a year.

During nonleap years, February and March share the same date patterns—up until

March 29, of course.

A sidereal year is based on the time it takes Planet Earth to make a lap around the

sun. Its value is 365.256363 days.

A lunar year consists of 12 moon cycles. It’s 354.37 days long.

Intercalary months are added to lunar calendars every few years to resynchronize

the moon cycle with the solar calendar.

A galactic year is 230,000,000 (solar) years long. It’s the time it takes the sun to

orbit the Milky Way galaxy—or the time it takes a toddler to find a matching pair of

socks.

13.2 Good dates to know

C programmers familiar with the library’s time functions
know that date-and-time tidbits can easily be extracted from
the current timestamp, available from the operating system:
values are available for the year, month, day of the month,
and day of the week. These items are all you need to
construct a calendar for the current week or month. But
what about next month? What about July in 1978? For these
details, your code must work harder.

Making date calculations is difficult because some months
have 30 days and some have 31. Once every four years,
February decides to grow another day—but even this leap
day isn’t consistent. To help you properly program dates,
you must code some tools.

13.2.1 Creating constants and enumerating dates

More than most of my programming, it seems like date
programming brings in a lot of constants—specifically, string
and symbolic constants for weekday and month names. For
my date programming, I employ both types of constants and

try to do so consistently for all my date-and-time related
functions.

For weekday and month names, I use const char pointers—
string constants. The weekday constants are:

const char *weekday[] = {
 "Sunday", "Monday", "Tuesday", "Wednesday",
 "Thursday", "Friday", "Saturday"
};

Shorter versions are also used:

const char *weekday[] = {
 "Sun", "Mon", "Tue", "Wed",
 "Thu", "Fri", "Sat"
};

Here are my favorite month constants:

const char *month[] = {
 "January", "February", "March", "April",
 "May", "June", "July", "August",
 "September", "October", "November", "December"
};

Each statement creates an array of pointers; storage for
each string is allocated by the program at runtime. What
remains is an array of addresses. Each array is in a
sequence that matches the tm_wday and tm_mon members
of the tm structure returned from the localtime() function.
For example, the tm_mon member for January is numbered
0, and the zeroth element of the month[] array is the string
for January.

The const classifier declares these arrays as immutable,
which prevents them from being accidentally altered
elsewhere in the code. The strings can be passed to
functions, but don’t change them! Doing so leads to
unpredictable behavior, but not when they’re classified as
constants.

Pairing with these two arrays, I also use enumerated
constants to represent the weekday and month values. The
C language enum keyword makes creating these constants
easy.

Don’t tell me you’ve avoided the enum keyword because it’s
weird. I did so for too long. Yet enum helps you define
constants similarly to the way an array defines groups of
variables with the same data type. For weekday and month
names, enum provides a helpful tool to create these
constants and make your code more readable.

As a review, the enum keyword is followed by a set of braces
that contain the enumerated (numbered) constants. Values
are assigned sequentially, starting with 0:

enum { FALSE, TRUE };

Here, constant FALSE is defined as 0; TRUE, as 1.

You can use an assignment operator to alter the number
sequencing:

enum { ALPHA=1, GAMMA=5, DELTA, EPSILON, THETA };

This statement defines constant ALPHA as 1. Constant
GAMMA is set equal to 5, with the rest of the constants
numbered sequentially: DELTA is 6, EPSILON is 7, and
THETA is 8.

The weekday values reported from the localtime() function
start with 0 for Sunday. Here is the enum statement to
declare weekday values for use in your code:

enum { SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY };

For the 12 months, you can split the enum statement across
multiple lines, just as you can split any statement in C:

enum { JANUARY, FEBRUARY, MARCH, APRIL,
 MAY, JUNE, JULY, AUGUST,
 SEPTEMBER, OCTOBER, NOVEMBER, DECEMBER };

As with weekdays, the localtime() function uses 0 to
represent January. These enumerated constants are ready to
use in your code. For example:

printf(“%s\n”,month[JANUARY]);

Using the month[] array defined earlier in this section,
along with enumerated constant JANUARY, the previous
statement outputs the text January. This construction is
self-documenting and easier to read than using month[0]
or something equally vague without reference to what 0
could mean.

13.2.2 Finding the day of the week

After arriving at the destination, the first thing a time
traveler asks is, “What year is it?” This question provides a
big-picture answer, but it also helps the production design
team understand how to visually misinterpret various eras in
history. And it allows the locals to predictably respond,
“What are you talking about, stranger in the silver
pajamas?”

For calendar programming, yes, knowing the current year is
important. Also necessary to plotting out a calendar is
knowing month, day, and—vitally—the weekday. The day-
and-weekday info are key to unlocking the first day of the
month. The other time tidbits are easily obtained from the
data reported by the time() and localtime() functions.

In the next listing, the time() function obtains the current
epoch value, a time_t data type. The localtime() function
uses this value to fill a tm structure, date. The month,
month day, year, and weekday values are then interpreted
and output, displaying the current day and date.

Listing 13.1 Source code for weekday01.c

#include <stdio.h>
#include <time.h>

int main()
{

 const char *weekday[] = { ❶
 "Sunday", "Monday", "Tuesday", "Wednesday",
 "Thursday", "Friday", "Saturday"
 };

 const char *month[] = { ❷
 "January", "February", "March", "April",

 "May", "June", "July", "August",
 "September", "October", "November", "December"
 };

 time_t now; ❸

 struct tm *date; ❹

 time(&now); ❺

 date = localtime(&now); ❻

 printf("Today is %s %d, %d, a %s\n", ❼
 month[date->tm_mon],
 date->tm_mday,
 date->tm_year+1900,
 weekday[date->tm_wday]
);

 return(0);
}

❶ String constants for the days of the week

❷ String constants for months of the year

❸ Variable to store the clock ticks

❹ Variable to store time tidbits

❺ Obtains the current clock tick value

❻ Fills the tm date structure with individual time values

❼ Outputs the results

The string constants declared in weekday01.c are used
throughout this chapter. Remember to define them as const
char variables; you don’t want to mess with the string’s
contents, lest all sorts of mayhem ensue.

The program built from the code in listing 13.1 outputs a
simple string, reflecting the current date and weekday:

Today is May 1, 2022, a Sunday

You can use the date info generated in the program to plot
out a calendar—for the current month. To figure out how the
following July maps out on a calendar, you must apply some
math. To help you, and avoid all that boring trial-and-error,
you can steal an algorithm from the internet.

Before computers on desktops were a thing, I remember one
of my elementary school teachers demonstrating an
algorithm to find the weekday for any day, month, and year.
It’s simple enough that you can perform the math in your
head without exploding. I forget what my teacher wrote on
the chalkboard, but here’s the algorithm, freshly stolen from
the internet:

int t[] = { 0, 3, 2, 5, 0, 3, 5, 1, 4, 6, 2, 4 };
year -= month<3;
r = (year + year/4 - year/100 + year/400 + t[month-1] + day) % 7

Array t[] holds the algorithm’s magic. I’m unsure what the
data references, though my guess is that it’s probably some
sort of month pattern index. The year value is reduced by 1
for the months of January and February. Then variable r
captures the day of the week, with Sunday being 0. I
assume most of the year manipulation in the expression is to
compensate for leap years. Further, this algorithm assumes
that the value of January is 1, not 0. These differences can
be adjusted as shown in the dayoftheweek() function in the
following listing.

Listing 13.2 The dayoftheweek() function

int dayoftheweek(int m,int d,int y) ❶
{

 int t[] = { ❷
 0, 3, 2, 5, 0, 3,
 5, 1, 4, 6, 2, 4
 };
 int r;

 y -= m<2; ❸

 r = (y + y/4 - y/100 + y/400 + t[m] + d) % 7; ❹
 return(r);
}

❶ The month value, m, ranges from 0 through 11 for January through December; d is the day of

the month, and y is the full year value (tm_year+1900).

❷ The magic array

❸ The m<2 evaluation is either 1 or 0, which is added to the year variable.

❹ The rest of the algorithm, with m used without modification as the element number

I updated the main() function from weekday01.c to call the
dayoftheweek() function. Specific values are set for month,
day, and year variables, which are passed to the function.
The result is then output. These modifications are found in
the online repository as source code file weekday02.c.
Here is some sample output:

February 3, 1993 is a Wednesday

The capability to obtain these four date details—year, month,
day, and day of the week—is key to creating a calendar. The
next step is to calculate the first day of the month, with the
rest of the days flowing after.

EXERCISE 13.1

If you’re like me, you probably played with the source code
from weekday02.c, typing in your birthday or some other

important date out of curiosity. But why keep updating the
source code?

Your task for this exercise is to modify the source code from
weekday02.c so that command-line arguments are
interpreted as the month, day, and year for which you want
to find the day of the week. And if your locale doesn’t like
the argument order—you can change it! Here is a sample
run of my solution, which I call weekday:

$ weekday 10 19 1987
October 19, 1987 is a Monday

My solution is available in the online repository as
weekday03.c.

13.2.3 Calculating the first day of the month

Today is the 20th day of the month—any month. It’s a
Monday. On which day of the week did the first day of the
month fall?

Uh . . .

Quick! Use the handy illustration in figure 13.1 to help your
calculations. If today is Monday the 20th, the first of the
month is on a Wednesday, always, for any month where
Monday is the 20th.

Figure 13.1 A month where the 20th is a Monday

When given a day of the month and its weekday, the
computer can easily calculate upon which day the first of the
month falls. Here is the formula I devised to determine the
weekday for the first of the month when given the current
weekday and day of the month:

first = weekday - (day % 7) + 1;

To work through the formula with figure 13.1, assume that
today is the 23rd—which it is as I write this text. It’s a
Thursday, numeric value 4:

first = 4 - (23 % 7) + 1
first = 4 - (2) + 1
first = 3

When a month has the 23rd fall on a Thursday, the first is on
a Wednesday (value 3). Refer to figure 13.1 to confirm.

To put my first-of-the-month algorithm to the test, the next
listing shows code that obtains the current date. It uses the
weekday and day of the month values to work the algorithm,
outputting on which weekday the first of the month falls.

Listing 13.3 Source code for thefirst01.c

#include <stdio.h>
#include <time.h>

int main()
{
 const char *weekday[] = {
 "Sunday", "Monday", "Tuesday", "Wednesday",
 "Thursday", "Friday", "Saturday"
 };
 time_t now;
 struct tm *date;
 int first;

 time(&now); ❶

 date = localtime(&now); ❷

 first = date->tm_wday - (date->tm_mday % 7) + 1; ❸

 printf("The first of this month was on a %s\n", ❹
 weekday[first]
);

 return(0);
}

❶ Obtains the current clock tick value

❷ Fills the tm structure date

❸ Works the algorithm

❹ Outputs the results

The source code for thefirst01.c is available in the
online repository, but don’t get excited about it. If the
current weekday value is greater than the weekday value for

the first of the month, the program works, as it did on my
computer:

The first of this month was on a Wednesday

If the current weekday value is less than the weekday value
of the first of the month, the code fails. For example, if
today is Tuesday (2) and the first is on Friday (5), you see
something like this delightful output:

Segmentation fault (core dumped)

The reason for the core dump is that the value stored in
first drops below 0. This error can be corrected by testing
for a negative value of first:

first = WEDNESDAY - (12 % 7) + 1;
if(first < 0)
 first += 7;

In this update to the code, I use enumerated constant
WEDNESDAY as the weekday and 12 as the day of the
month. The first of the month is on a Saturday. Here is the
code’s output:

The first of this month was on a Saturday

Finding the weekday for the first of the month may seem
silly. After all, from the preceding section you find code that
locates the day of the week for any day of the month. The
issue is that you’re often not given the first of the month.
Sure, you could write more code that calls the

dayoftheweek() function after modifying the current day of
the month. But I find that using the algorithm works best for
me.

EXERCISE 13.2

It’s time to write another function! From the source code file
thefirst02.c, pull out the algorithm portion of the main()
function and set it into its own function, thefirst(). This
function is prototyped like this:

int thefirst(int wday, int mday)

Variable wday is the day of the week, mday is the day of the
month. The value returned is the weekday for the first of the
month, range 0 through 6.

My solution is available in the online repository as
thefirst03.c. I wrote code in the main() function to
report the first of the month when the current day is the
25th, a Saturday. Comments in the code explain my
approach.

13.2.4 Identifying leap years

You can’t discuss date programming without bringing up the
squidgy issue of leap years. The varying number of days in
February is yet another example of the universe trying to tell
us that nothing would exist if everything were in perfect
balance.

When I work with days in the month, I typically write an
array like this:

int mdays[] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };

This array holds the number of days for January through
December. For February, the value is 28. But one out of
every four years (on average), February has 29 days—the
extra leap day in a leap year.

To determine which years are leap years, and adjust the
mdays[], you must do some math. Here are the leap year
rules in order of elimination:

If the year is divisible by both 100 and 400, it’s a leap
year.

If the year is divisible only by 100, it’s not a leap year.
If the year is divisible by four, it’s a leap year.

Normally, the leap year rules are listed in reverse order: If
the year is divisible by four, it’s a leap year, unless the year
is divisible by 100, in which case it’s not a leap year, unless
the year is also divisible by 400, in which case it is a leap
year.

Got it?

No, it’s easier to list the rules upside down, which also helps
to write a leap year function, february(), shown next. Its
purpose is to return the number of days in February, a value
then set into an array like mdays[] (shown earlier). The

rules for calculating a leap year appear in the function as a
series of if tests based on the year value passed.

Listing 13.4 The february() function

int february(int year)
{

 if(year%400==0) ❶
 return(29);

 if(year%100==0) ❷
 return(28);

 if(year%4!=0) ❸
 return(28);

 return(29); ❹
}

❶ If the year is divisible by 400 (which includes 100), it’s a leap year.

❷ If the year is divisible by 100, it’s a leap year.

❸ If the year is not a multiple of four, it’s not a leap year.

❹ Otherwise, it’s a leap year.

I use the february() function in the source code file
leapyear01.c, available in the online repository. In the
main() function, a loop tests the years 1584 through 2101,
which span the time from when the Gregorian calendar
began to when the lizard people finally invade. If the year is
a leap year, meaning the february() function returns 29, its
value is output. Here is the tail end of a sample run:

...
1996
2000
2004
2008
2012
2016

2020
2024
2028
2032

The code accurately identifies the year 2000 as a leap year.

The february() function is used in programs demonstrated
later in this chapter to update the mdays[] array to reflect
the proper number of days in February for a given year.

13.2.5 Getting the time zone correct

One weirdo issue to consider when dealing with dates is the
computer’s time zone. This value is set according to the
system’s locale. It reflects the local time of day, which is
what’s accessed when you program dates and time in C.

Normally, the time zone detail is ignored; what you want to
obtain from the time() function is the current date and time
for the computer or other device’s location. However, if your
code doesn’t account for the difference between GMT, or
Greenwich Mean Time, and your local time zone, the time
calculation you make could be inaccurate.

For example, my time zone is US Pacific. If I’m not careful,
the eight-hour time difference gives me results that are off
by eight hours. Believe it or not, this level of chronological
accuracy is necessary for a program to spit out an accurate
calendar.

To drive home this concern, consider the source code in the
next listing. It initializes a time_t value to 0, which is the

dawn of the Unix epoch, or midnight January 1, 1970. This
value is output in a printf() statement, which uses the
ctime() function to convert a time_t value into a human-
readable string.

Listing 13.5 Source code for timezone01.c

#include <stdio.h>
#include <time.h>

int main()
{

 time_t epoch = 0; ❶

 printf("Time is %s\n",ctime(&epoch)); ❷

 return(0);
}

❶ Presets the time_t value to zero, the dawn of the Unix epoch

❷ Outputs the time string for the epoch

When the program is run, I see this text on my computer:

Time is Wed Dec 31 16:00:00 1969

The output shows eight hours before the epoch began
(midnight, January 1) because my computer’s time zone is
set to GMT-8 (Greenwich Mean Time minus eight hours), or
Pacific Standard Time. The output is accurate: when it was
midnight on January 1 in the UK, it was 4:00 P.M. the day
before here on the West Coast of the United States.

In Linux, you can check the computer’s time zone
information by examining the /etc/localtime symbolic
link. Use the ls -l (dash-L) command:

ls -l /etc/localtime

Here is the relevant part of the output I see on my system:

/etc/localtime -> /usr/share/zoneinfo/America/Los_Angeles

My time zone is set the same as in Los Angeles, though the
people are much nicer where I live. The output you see is
local to your system, a value set when Linux was first
configured.

Your code need not look up the /etc/localtime symbolic
link to determine the computer’s time zone or attempt to
change this setting. Instead, you can write code to
temporarily set the TZ (time zone) environment variable to
GMT. To make this update to the source code for
timezone01.c, you must add two functions: putenv() and
tzset().

The putenv() adds an environment variable to the program’s
local environment; the change doesn’t affect the shell, so it’s
not something you must undo later in the code. The man
page format is

int putenv(char *string);

The string is the environment entry to add. In this case,
it’s TZ=GMT for “time zone equals Greenwich Mean Time”
exactly, the time zone you want. This function requires the
inclusion of the stdlib.h library.

The tzset() function sets the program’s time zone—but only
while it runs. The function doesn’t otherwise alter the
system. Here is the man page format:

void tzset(void);

The tzset() function requires no arguments because it uses
the TZ environment variable to set the program’s time zone.
The time.h header file must be included for this function to
behave properly.

To update the code for timezone01.c, add the following
two statements before the printf() statement:

putenv("TZ=GMT");
tzset();

And don’t forget to include the stdlib.h header file for the
putenv() function. These changes are found in the online
repository in the source code file timezone02.c. Here is
the program’s output:

Time is Thu Jan 1 00:00:00 1970

The output now reflects the true Unix epoch as the
program’s time zone is changed to GMT internally.

This code is used later in this chapter, when the full year
calendar is generated. Without making the adjustment, the
calendar outputs the incorrect year, before or after the
desired year based on your local time zone. The time zone
adjustment ensures that the calendar is properly aligned.

You can also use this trick in other programs that rely upon
precise time-and-date calculations.

13.3 Calendar utilities

The Linux cal program does more than you can imagine. It’s
impressive. Given its abundance of options and switches, cal
can output dates in a given range for a given locale in a
specific format. As with other Linux command-line programs
I’ve aped, the goal for my calendar programs is to be
specific, as opposed to writing one program that does
everything.

I first coded my calendar programs because I wanted to see
output for the current month in a wider format than what
the cal program generates. Also, I just wanted to see
whether I could code a calendar for any given month. The
result is my month program, which I use far more often than
cal.

One decision to make right away with any calendar utility is
whether the week starts on Monday or Sunday. The cal
program (as you may suspect) has options to set the week’s
starting day. For my series of calendar programs in this
chapter, it’s assumed that the week starts on Sunday.

13.3.1 Generating a week

I suppose the simplest calendar would output only the
current day—something like this:

September 2022
Friday
23

Most people want more from a calendar. But rather than
start with the current month, my first calendar program
shows the current week. This code hinges upon knowing the
current day of the month and weekday. Here is the output I
want to see for the final program:

December / January - Week 52
Sun Mon Tue Wed Thu Fri Sat
[26] 27 28 29 30 31 1

The current day is December 26. The month (and year) ends
on Friday, with Saturday being the first of January and the
new year. It’s the 52nd week of the year.

Before coding all that output, I want to start small and
output only the current week. A loop outputs the days,
Sunday through Saturday. No matter which weekday it is
currently, the output starts on Sunday. Today’s day is
highlighted in brackets.

The localtime() function reports details about the current
day of the week. The formula I use to determine Sunday’s
date is:

sunday = day_of_the_month - weekday;

The day_of_the_month value is found in the tm structure,
member tm_mday. Today’s weekday value is member

tm_wday. As an example, if today is Thursday the 16th, the
formula reads:

sunday = 16 - 4;

The date for Sunday is the 12th, which checks out on the
monthly calendar shown in figure 13.1, earlier in this
chapter. The sunday value is then used in a loop to output
the seven days of the week:

for(d=sunday; d<sunday+7; d++)

I output the consecutive days in a space four characters
wide. This room allows for today’s date to be output
embraced by square brackets.

The full code for my week01.c program is shown in the
next listing. It reads data from the time() and localtime()
functions, outputs the current month (but not the year), and
outputs dates for the current week. I use variables day,
month, and weekday as readable shortcuts for their related
members of the tm structure.

Listing 13.6 Source code for week01.c

#include <stdio.h>
#include <time.h>

int main()
{
 const char *months[] = {
 "January", "February", "March", "April",
 "May", "June", "July", "August",
 "September", "October", "November", "December"
 };

 time_t now;
 struct tm *date;
 int day,weekday,month,sunday,d;

 time(&now); ❶

 date = localtime(&now); ❷

 day = date->tm_mday; ❸
 month = date->tm_mon;
 weekday = date->tm_wday;

 sunday = day - weekday; ❹

 printf(" %s\n",months[month]); ❺

 printf("Sun Mon Tue Wed Thu Fri Sat\n"); ❻

 for(d=sunday; d<sunday+7; d++) ❼
 {

 if(d==day) ❽
 printf("[%2d]",d);
 else

 printf(" %2d ",d); ❾
 }
 putchar('\n');

 return(0);
}

❶ Obtains the current time in clock ticks

❷ Converts the time_t value into tm structure members

❸ Sets the day, month, and weekday values for convenience and readability

❹ Calculates the date for Sunday

❺ Outputs the first line, the current month

❻ Outputs the day of the week header row

❼ Loops through days of the week, Sunday through Sunday + 7

❽ For the current day, outputs its value in brackets

❾ Outputs every other day without brackets

The source code from listing 13.6 is available in the online
repository as week01.c. Its core consists of three lines of
output, with the third line generated by a loop. The loop

outputs days of the week, starting at Sunday. The current
day is highlighted, as shown in the sample output:

 September
Sun Mon Tue Wed Thu Fri Sat
 12 13 14 15 [16] 17 18

Of course, this code isn’t perfect. If the first of the month
falls on any day other than Sunday, you see output like this:

 September
Sun Mon Tue Wed Thu Fri Sat
 -3 -2 -1 0 1 [2] 3

Likewise, at the end of the month, you can see output like
this:

 September
Sun Mon Tue Wed Thu Fri Sat
 26 27 [28] 29 30 31 32

For my first update to the code, I added another decision in
the output: In the for loop, if the value of variable d is less
than one, spaces are output instead of the day value.
Likewise, spaces are output when the day value is greater
than the number of days in the current month.

Determining the last day of the month requires more code.
Specifically, you must add the mdays[] array that lists days
of each month, and also the february() function, covered
earlier in this chapter. This function is necessary to ensure
that the proper number of days in February is known for the
current year.

The mdays[] array is added to the code in the variable
declaration part of the main() function:

int mdays[] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };

The february() function is also added to the source code.
After the localtime() function is called, the february()
function is called to update the mdays[] array, element
one:

mdays[1] = february(date->tm_year+1900);

The following code shows the updated for loop in the main()
function. The first if decision outputs spaces for out-of-range
dates. The else portion consists of the original if-else
decision from the first version of the code.

Listing 13.7 The updated for loop found in week02.c

for(d=sunday; d<sunday+7; d++)
{

 if(d<1 || d>mdays[month]) ❶
 printf(" ");
 else
 {

 if(d==day) ❷
 printf("[%2d]",d);
 else

 printf(" %2d ",d); ❸
 }
}

❶ If date d is out of range, less than 1, or greater than the number of days in the current

month, outputs spaces

❷ Outputs the current day with brackets

❸ Outputs other days without brackets

This update to the source code is found in the online
repository as week02.c. It accurately addresses the date
overflow issues, as shown in this sample output:

 September
Sun Mon Tue Wed Thu Fri Sat
 1 [2] 3

At the end of the month, the output now looks like this:

 September
Sun Mon Tue Wed Thu Fri Sat
 26 27 [28] 29 30

Delightfully awkward output happens when today is the first
and it’s a Saturday:

 January
Sun Mon Tue Wed Thu Fri Sat
 [1]

I don’t want this program to show multiple weeks, which
would eventually devolve it into a month program. No, what
would be keen is to output those final days from the
preceding month, like this:

 December / January
Sun Mon Tue Wed Thu Fri Sat
 26 27 28 29 30 31 [1]

Both months are listed in the header because dates from
both months appear in the output. The current date is
highlighted so that an astute user (that’s you) can tell that
the week is the last one of the previous year, but today’s
date is New Year’s Day.

This update to the code from week02.c requires the
addition of a new variable, pmonth, which holds the value of
the previous month. The pmonth calculation takes place
after the current month’s value is read and stored in variable
month:

pmonth = month-1;
if(pmonth<0)
 pmonth=11;

The previous month’s value is the current month’s value
minus one. If it’s January (0), the previous month’s value is
negative. The if test catches this condition, in which case the
value of pmonth is set to 11, December.

Next, a series of tests are performed to determine which
month names to output: a single month, the current and
previous months, or the current and next months. These
tests are illustrated here.

Listing 13.8 Tests to determine which months to output (from week03.c)

if(sunday<1) ❶
 printf(" %s / %s\n",months[pmonth],months[month]);

else if(sunday+6 > mdays[month]) ❷
{

 if(month==11) ❸
 printf(" %s / %s\n",months[month],months[0]);
 else

 printf(" %s / %s\n",months[month],months[month+1]); ❹
}
else

 printf(" %s\n",months[month]); ❺

❶ When days from the previous month are calculated, shows the previous and current months

❷ Tests to see whether days from the next month are output

❸ For December, outputs December and January directly

❹ For other months, outputs the current and next month names

❺ No previous or next month dates appear in the output.

To output dates from the previous or next month, the for
loop in the main() function must be modified. Again, an if
else-if else structure is used, shown in the next listing.
Calculations are made to generate the trailing dates from the
previous month and the following dates from the next
month.

Listing 13.9 The updated for loop (from week03.c)

for(d=sunday; d<sunday+7; d++)
{

 if(d<1) ❶

 printf(" %2d ",mdays[pmonth]+d); ❷

 else if(d>mdays[month]) ❸

 printf(" %2d ",d-mdays[month]); ❹

 else ❺
 {
 if(d==day)
 printf("[%2d]",d);
 else
 printf(" %2d ",d);
 }
}

❶ The previous month still has days to output.

❷ Outputs the dates using the previous month’s number of days minus the value of variable d

❸ If the value of variable d is greater than the number of days in the current month . . .

❹ . . . outputs days from the next month using d minus the number of days in the current

month

❺ The final else block outputs days from the current month as-is.

These decisions look messy, but they’re required to fill in the
proper dates for overlapping months. The full source code is

available from the online repository as week03.c. Here’s a
sample run:

 December / January
Sun Mon Tue Wed Thu Fri Sat
[26] 27 28 29 30 31 1

Above, the next month and first day of the month are output
for the current week, when today is December 26. Similar
output is shown when days from the previous month appear
in the week:

 November / December
Sun Mon Tue Wed Thu Fri Sat
 28 29 [30] 1 2 3 4

And:

 November / December
Sun Mon Tue Wed Thu Fri Sat
 28 29 30 1 2 [3] 4

The program is pretty much complete at this point. Being a
nerd, however, I always look for ways to improve upon the
code. The only thing I can think to add is to output the
current week number as well.

Each year has 52 weeks, though they don’t fall in a regular
pattern. After all, the first week of the year may have a few
lingering days from December. From what I gather, when
January 1 falls on a Wednesday or earlier in the week, it’s in
the first week of the year. Otherwise, January 1 is part of
week 52 from the previous year.

An exception occurs during leap years when January 1 falls
on a Thursday. Though it could be week 52 of the preceding
year, a leap year can have 53 weeks. The next time a year
has 53 weeks is in 2032—so hang on to this book!

My first attempt to calculate the current week number
resulted in this formula:

weekno = (9 + day_of_the_year - weekday) / 7;

The day_of_the_year value is kept in the tm structure as
member tm_yday. The weekday value is tm structure
member tm_wday, where Sunday is zero. The expression is
divided by seven, which is rounded as an integer value and
stored in variable weekno.

The value of weekno must be tested for the first week of the
year—specifically, when the first of January falls late in the
week. In this configuration, the weekno value returned by
the equation is 0. It should be 52, as it’s technically the last
week of the previous year. Therefore, some adjustment is
necessary before the value is output:

if(weekno==0)
 weekno = 52;

To complete the code update from week03.c, you must
remove all the newlines from the printf() statement that
outputs the current month or pair of months. Follow these
statements with a new printf() statement:

printf(" - Week %d\n",weekno);

The final program is available in the online repository as
week04.c. Here is a sample run:

 December / January - Week 52
Sun Mon Tue Wed Thu Fri Sat
[26] 27 28 29 30 31 1

Here is the output for January 1 of the same week:

December / January - Week 52
Sun Mon Tue Wed Thu Fri Sat
 26 27 28 29 30 31 [1]

By the way, you can also use the strftime() function to
obtain the current week number. The placeholder is %W, but
it reports the first day of the week as Monday. The week
number value is set into a string, which must be converted
to an integer to perform any math. Like the formula I chose
to use for my update to the code, the strftime() function
returns 0 for the first week of the year.

13.3.2 Showing a month

The month program was the first calendar program I wrote.
I used it to help with my C programming blog posts
(https://c-for-dummies.com/blog), which I write in advance
and schedule for later. Obviously, I could use the cal
program, which outputs the current month as a default:

 December 2021
Su Mo Tu We Th Fr Sa

https://c-for-dummies.com/blog

 1 2 3 4
 5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31

Oh, and the cal program does lots of other things, too. But I
didn’t let its flexibility stop me. Here is the output from my
program, which I call month:

 December 2021
Sun Mon Tue Wed Thu Fri Sat
 1 2 3 4
 5 6 7 8 9 10 11
 12 13 14 15 16 17 18
 19 20 21 22 23 24 25
 26 [27] 28 29 30 31

The output is a bit wider, which I find more readable—even
back before I needed reading glasses. After all, my goal is to
output the current month. The dimensions of the cal
program’s output are designed so that the entire year can be
shown three months wide by three columns deep. My month
program could output months three wide, but the text won’t
fit on an 80-column screen. I touch upon this issue later in
this chapter.

A month of dates is really a grid: rows for weeks and
columns for days of the week. It’s not a full grid because the
starting point occurs at a specific column; the first row of
output is special. The rest of the days of the month flow
through the grid until the last day, when output stops.

The following listing shows my test code to ensure that the
month program works. It outputs the month of December
2021. The focus is on the nested loop: the while loop uses

the variable day to churn through days of the month. The
inner for loop processes weeks. The first week is special,
which outputs blanks for days from the previous month.

Listing 13.10 Source code for month01.c

#include <stdio.h>

int main()
{
 int mdays,today,first,day,d;

 mdays = 31; ❶

 today = 27; ❷

 first = 3; ❸

 printf("December 2021\n");
 printf("Sun Mon Tue Wed Thu Fri Sat\n");

 day = 1; ❹

 while(day<=mdays) ❺
 {

 for(d = 0; d < 7; d++) ❻
 {

 if(d<first && day==1) ❼
 {

 printf(" "); ❽
 }

 else ❾
 {

 if(day == today) ❿
 printf("[%2d]",day);
 else

 printf(" %2d ",day); ⓫

 day++; ⓬

 if(day>mdays) ⓭
 break;
 }
 }
 putchar('\n');
 }

 return(0);
}

❶ Presets the number of days in the month (for December)

❷ Sets today as the 27th

❸ The first day of the month is on Wednesday.

❹ Starts with the day counter at 1, the first day of the month

❺ Loops through the days of the month

❻ Loops through a week, Sunday (0) through Saturday (6)

❼ Checks for the first week of the month

❽ Outputs blanks-and do not increment the day counter!

❾ Outputs days, now that the first week/day has passed

❿ Highlights today

⓫ Regular day output

⓬ Increments the day counter

⓭ Exits the loop after the last day of the month

From listing 13.10, in the for loop you can see that the first
week of the month is handled differently from the remaining
weeks. No output should occur before the first day of the
month. Variable first holds the weekday value—3 for
Wednesday—so the if test is TRUE for days before the first of
the month:

if(d<first && day==1)
{
 printf(" ");
}

Variable d tracks days of the week, Sunday through
Saturday (0 through 6). Variable first holds the day of the
week on which the first of the month falls. Variable day
represents the day of the month.

When the first of the month is encountered, the else portion
of the if decision takes over, outputting the rest of the month

grid. Sample output for this version of the month program is
shown earlier. The source code file month01.c is available
in the online repository.

I messed with variables mdays, today, and first to
ensure that the month program output the various month
configurations. The next step to improve the code is to use
the current month’s data. This improvement requires several
steps.

First, the code must include the february() and thefirst()
functions, covered earlier in this chapter. You need to add
the february() function to complete a proper mdays[] array,
which contains days of the month for the current year. The
other function lets you know upon which weekday the first of
the month falls.

Second, the variable declarations are updated to include the
month name constants, mdays[] array, and other variables
required to report the current month’s dates:

const char *months[] = {
 "January", "February", "March", "April",
 "May", "June", "July", "August",
 "September", "October", "November", "December"
};
int mdays[] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
time_t now;
struct tm *date;
int month,today,weekday,year,first,day,d;

Third, the time() and localtime() functions are called to
obtain details about the current date:

time(&now);
date = localtime(&now);

Fourth, the current date info is packed into the variables
month, today, weekday, and year. February’s days are
updated with a call to the february() function, and variable
first is set to the day of the week upon which the first of
the month falls:

month = date->tm_mon;
today = date->tm_mday;
weekday = date->tm_wday;
year = date->tm_year+1900;
mdays[1] = february(year);
first = thefirst(weekday,today);

Fifth, the printf() statement to output the current month and
year is updated:

printf("%s %d\n",months[month],year);

And finally, the mdays variable in the original source code
file must be replaced by mdays[month] in the final version.

This update to the code is titled month02.c, available in the
online repository. Unlike the original, static program, this
version outputs the current month.

EXERCISE 13.3

The month program’s output lists the current month and
year as the top heading but right-justified. Update the code
to create a new function, center(). The function’s purpose

is to output a string of text centered within a certain width.
Here is the prototype to use:

void center(char *text,int width);

The function calculates the length of string text and then
does the fancy math to center the string within the given
width. If the string is longer than the width, it’s output and
truncated to the width.

Making this update to the month02.c code involves more
than just writing the center() function. Ensure that the
function is called with the proper string arguments and that
the result is output atop the calendar. My solution is titled
month03.c, and it’s available in the online repository.

EXERCISE 13.4

No, you’re not quite done with the month program. Your
final task is to modify the main() function from month03.c
(see the preceding exercise) so that any command-line
arguments are parsed as a month-and-year value. Both
values must be present and valid; otherwise, the current
month is output. My solution is available in the online
repository as month04.c.

13.3.3 Displaying a full year

The issue with outputting a full year has nothing to do with
fancy date coding; the math and functions required are

already presented so far in this chapter. The problem is
getting the output correct—rows and columns.

Figure 13.2 shows the output from a year program that uses
the same format as the months program, shown earlier in
this chapter. You see three columns by four rows of months.
Steam output generates the text, one row at a time. Some
coordination is required to produce the visual effect you see
in the figure. Further, the output is far too wide for a typical
80-column text screen. So, while the math and functions
might be known, fine-tuning the output is the big issue.

Figure 13.2 Output from a year program that uses the same format as

the month program

Rather than go hog-wild and attempt to code a multicolumn
year program all at once, I sought to first code a long
vertical column for the current year. The code, year01.c, is
available in the online repository. It uses the existing
center() and february() functions.

The main() function consists of two parts. The first part
initializes all variables to a specific year. I chose the year
2000. The code sets the weekday for January 1, which starts
the entire year. Once established, the second part of the
main() function consists of a loop to output the months.

The following listing shows the initialization portion of the
main() function. The code is cobbled together from the
month series of programs, though the program doesn’t scan
command-line input.

Listing 13.11 Initialization in the main() function from year01.c

const char *months[] = { ❶
 "January", "February", "March", "April",
 "May", "June", "July", "August",
 "September", "October", "November", "December"
};
int mdays[] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
struct tm date;
int month,weekday,year,day,dow;
const int output_width = 27;
char title[output_width];

date.tm_year = 2000-1900; ❷
date.tm_mon = 0;
date.tm_mday = 1;

date.tm_hour = 0; ❸
date.tm_min = 0;
date.tm_sec = 0;

putenv("TZ=GMT"); ❹
tzset();

mktime(&date); ❺

weekday = date.tm_wday; ❻

year = date.tm_year+1900; ❼

mdays[1] = february(year); ❽

❶ Constants and stuff from earlier date code

❷ Y2K is hardcoded here, minus 1900 for the tm structure.

❸ Remember to set hours, minute, and seconds.

❹ You must set the time zone, or else January 1 may fall in the previous year.

❺ Updates the tm date structure, specifically with the weekday value

❻ Uses weekday for readability and to save typing molecules

❼ Adjusts the year value

❽ Sets the proper number of days in February

It’s important that the time zone be set to GMT, as shown in
listing 13.11. In my original code, I forgot to do this step—
even though I warned about doing so earlier in this chapter
—and the oversight caused lots of grief. As I was testing the

code late in the evening, the years and dates were off. Only
by asserting GMT as the time zone does the calendar year
properly render, no matter what your time zone.

The main() function’s nested loops are shown next. They
consist of an outer for loop to process the months and an
inner while loop to process days of the month. Variable dow
counts weekdays. It’s updated manually as opposed to being
in a loop because the first weekday of the month isn’t the
same for every month.

Listing 13.12 The output loop from the main() function in year01.c

dow = 0; ❶

for(month=0; month<12; month++) ❷
{

 sprintf(title,"%s %d",months[month],year); ❸
 center(title,output_width);
 printf("Sun Mon Tue Wed Thu Fri Sat\n");

 day = 1; ❹

 while(day<=mdays[month]) ❺
 {

 if(dow<weekday && day==1) ❻
 {
 printf(" ");
 dow++;
 }
 else
 {

 printf(" %2d ",day); ❼

 dow++; ❽

 if(dow > 6) ❾
 {

 dow = 0; ❿

 putchar('\n'); ⓫
 }

 day++; ⓬

 if(day>mdays[month]) ⓭
 break;
 }

 }

 weekday = dow; ⓮

 dow = 0; ⓯
 printf("\n\n");
}

❶ The weekday loop variable, day-of-the-week

❷ The outer loop pages through months of the year.

❸ Outputs the month and year, centered, and the weekday header row

❹ Initializes the day of the month, the first

❺ Loops through the days of the month

❻ The first week is special; variable weekday holds the first weekday of the month. Outputs

blanks before then.

❼ Outputs the date

❽ Increments the day of the week, Sunday (0) through Saturday (6)

❾ Checks for weekday overflow

❿ Resets the day of the week back to Sunday (0)

⓫ Outputs a newline for the next week

⓬ Increments the day of the month counter

⓭ Tests for the end of the month

⓮ Sets the first day of the month for next month

⓯ Resets the day of the week back to Sunday for the next month

Variable dow works with variable weekday to output the
first week of January. Afterward, variables weekday and
dow are updated so that the following month’s start day is
properly set.

The full code is available in the online repository as
year01.c. Here is the first part of the output:

 January 2000
Sun Mon Tue Wed Thu Fri Sat
 1
 2 3 4 5 6 7 8
 9 10 11 12 13 14 15

 16 17 18 19 20 21 22
 23 24 25 26 27 28 29
 30 31

 February 2000
Sun Mon Tue Wed Thu Fri Sat
 1 2 3 4 5
 6 7 8 9 10 11 12
. . .

Each month follows, all down one long page of text. The
output is accurate for the year 2000, but who wants to relive
that?

EXERCISE 13.5

Modify the year01.c code so that it accepts a command-
line argument for the year to output. When a command-line
argument isn’t available, the current year is output. The
changes necessary all take place in the main() function.
Remember that the year input and the tm_year value differ
by 1900.

My solution is named year02.c and is found in the online
repository. Comments in the code explain my approach.

13.3.4 Putting the full year into a grid

To output a full year of months in a grid on a text screen
requires that it be output one row at a time. The approach
used in the year01.c code just won’t work; stream output
doesn’t let you back up or move the cursor on the text
screen. Each line must be processed one a time, with
multiple steps required to output different dates for different

months. So, I threw out most of the year01.c code to start
over.

The calendar still progresses month by month. But the
months are organized into columns. For each column,
individual rows for each month are output. Figure 13.3
illustrates this approach, with each month output a row at a
time: two header rows, a special first week of the month
row, and then the remaining weeks in the month. Each
month must output six weeks, even when the month has
only five weeks of dates.

Figure 13.3 The approach to output a multicolumn display

To start working on the code, I copied the center() and
february() functions from the existing year source code files.
The main() function retains most of the setup required for
the year02.c update to read a command-line argument.
From this base, I built the rest of the code.

From the top down, the first change is to add a defined
constant, COLUMNS:

#define COLUMNS 3

This symbolic constant sets the number of columns wide for
the output, but it’s not a value the user should change: valid
values for COLUMNS are limited to factors of 12. You can
change the definition to two, three, four, six, or even 12. But
if you use another value, the arrays in the code will overflow.

The next update required is to the center() function. As used
earlier in this chapter, the function centers the month and
year within a given width but doesn’t pad out the rest of the
row of text. To line up the months in a grid, the header row
one must be output at a consistent size. The next listing
shows the required updates to the center() function for row-
by-row output. The width argument centers the text and
sets the number of spaces to pad on both sides.

Listing 13.13 The updated center() function

void center(char *text,int width)
{
 int s,length,indent;

 length = strlen(text);
 if(length < width)

 {
 indent = (width-length)/2;
 for(s=0;s<indent;s++)
 putchar(' ');

 while(*text) ❶
 {

 putchar(*text); ❷

 text++; ❸

 s++; ❹
 }

 for(;s<width;s++) ❺
 putchar(' ');
 }
 else
 {
 for(s=0;s<width;s++)
 putchar(*text++);
 }
}

❶ Instead of a puts() function, outputs the string one character at a time

❷ Outputs each character

❸ Increments the pointer

❹ Tracks variable s to determine the final output width

❺ Outputs spaces to match the width value

With the center() function updated, my approach is to
output only the first row by itself—just to see whether it
works. The program outputs header row one, the month and
year. I used this code:

for(month=0; month<12; month+=COLUMNS) ❶
{
 for(c=0; c<COLUMNS; c++)
 {
 sprintf(title,"%s %d",months[month+c],year);
 center(title,output_width);

 printf(" "); ❷
 }
 putchar('\n');
}

❶ Skips over every COLUMN month to output rows

❷ Three spaces

The prntf() statement outputs three spaces to keep each
month/year header separated in the grid. This program
serves as a test to ensure that the grid is output in the order
I want. Here’s a sample run, minus a few spaces to fit on
this page:

 January 2021 February 2021 March 2021
 April 2021 May 2021 June 2021
 July 2021 August 2021 September 2021
 October 2021 November 2021 December 2021

Adding the weekday header row is the next step. It requires
a second for loop inside the outer month loop. In fact, each
row of output represents a for loop in the code. These
statements are inserted after the putchar('\n')
statement ending the previous for loop, which also adds
spaces to separate the columns:

for(c=0; c<COLUMNS; c++)
{
 printf("Sun Mon Tue Wed Thu Fri Sat ");
}

At this point, I became confident that I could output the year
calendar in a grid. The key was to use sequential for loops,
one for each row in the month. The last statement in each
for loop pads spaces to keep the month grids separate in
each column.

The most difficult row to output is the first week of the
month. As with the other calendar programs in this chapter,

the first day of the month starts on a specific weekday. I
could use the first() function to determine each month’s
starting weekday, but instead I created an array in the
main() function:

int dotm[12];

The dotm[] (day of the month) array holds the starting day
for each month in the year. Its values are the same as the
weekday variable, 0 through 6. The weekday variable
already holds the day of the week for January 1. It’s stored
in element 0 of the dotm[] array. A for loop then fills in
values for the remaining months:

dotm[0] = weekday;

for(month=1; month<12; month++)
{
 dotm[month] = (mdays[month-1]+dotm[month-1]) % 7;
}

The statement in the for loop totals the values of the
number of days in the previous month, mdays[month-1],
with the starting day of the week for the previous month,
dotm[month-1]. This total is modulo 7, which yields the
starting day of the week for the month represented by
variable month. When the loop is complete, the dotm[]
array holds the starting weekday for the first of each month
in the given year.

Listing 13.14 shows the next nested for loop that generates
the first row for each month of the year. The starting value

in the dotm[] array determines which weekday starts the
month. The day of the month, starting with one, is stored in
variable day.

Listing 13.14 The third nested for loop, outputting the first week of each

month

for(c=0; c<COLUMNS; c++)
{

 day = 1; ❶

 for(dow=0; dow<7; dow++) ❷
 {

 if(dow<dotm[month+c]) ❸
 {
 printf(" ");
 }
 else
 {

 printf(" %2d ",day); ❹

 day++; ❺
 }
 }

 printf(" "); ❻

 dotm[month+c] = day; ❼
}
putchar('\n');

❶ Initializes the day of the month

❷ Loops through days of the week

❸ If the first of the month weekday hasn’t happened, outputs a space

❹ Otherwise, outputs the day, as was done in the other calendar programs

❺ Increments the day of the month

❻ After the month’s week is output, pads two spaces

❼ Saves the day of the month for output on the next row’s Sunday position

Most of the for loop shown in listing 13.14 is borrowed from
code presented earlier in this chapter. What’s different is
saving the day of the month for the next row’s output:

dotm[month+c] = day. This value, available in variable
day, replaces the starting day of the month in the dotm[]
array. It’s used to output the next row, to set the day of the
month value for the next Sunday.

The final for loop is responsible for outputting rows two
through six for each month. It includes a nested for loop for
each day of the week, with the outer for loop processing
each week. The following listing shows the details, which
again use the dotm[] array to hold the starting day for each
subsequent week.

Listing 13.15 The final for loops for the main() function

for(week=1; week<6; week++) ❶
{

 for(c=0; c<COLUMNS; c++) ❷
 {

 day = dotm[month+c]; ❸

 for(dow=0; dow<7; dow++) ❹
 {

 if(day <= mdays[month+c]) ❺
 printf(" %2d ",day);
 else

 printf(" "); ❻
 day++;
 }

 printf(" "); ❼

 dotm[month+c] = day; ❽
 }

 putchar('\n'); ❾
}

putchar('\n'); ❿

❶ Six weeks for each month, regardless of whether the month has a sixth week

❷ Output is by column first—each column and then each week (outer loop).

❸ Updates the day of the month for Sunday output

❹ The innermost (fourth-nested) loop outputs weekdays.

❺ For valid days of the current month, outputs the day number

❻ Outputs blanks for days beyond the last day of the month

❼ Pads two spaces between weeks

❽ Updates the day for next week’s Sunday

❾ End of the row of weeks

❿ End of the month—space between this row of months and the next

Because the starting day of the week is saved in the dotm[]
array, the triple nested loops shown in listing 13.15 have an
easy time outputting weeks for each row and then each
month in the larger grid row.

The updated code for the year program is available in the
online repository as year03.c. The output is shown in
figure 13.2. I’ve adjusted the COLUMNS value to 2 and then
4, and the code still performs well. It also handles the year
as a command-line argument. But it’s just too wide!

Yes, you can adjust the terminal window for your operating
system. Still, I like a cozy 80-by-24 window, just like
grandpa used. Though I could adjust the output width for
days of the week, making it narrower like the cal program, a
better way to condense things might be to color-code the
output.

13.4 A calendar in color

Text mode need not be as boring as it was at the height of
its unpopularity in the early 1980s. Yes, many people had
text-only displays because it was cheaper. Early graphics
systems, primitive beyond belief by today’s standards, were

pricey. Early PC monochrome monitors could output text in
normal or high intensity (brightness), inverse, and
underline. Some data terminals output text in color, as did a
few home computers.

As costs came down, color text became more common. Early
word processors highlighted onscreen text in various colors
to show different attributes and fonts. Colorful text
programs, databases, spreadsheets, and such were all the
rage—until graphical operating systems took over. Then color
text took the backseat, where it’s been ever since.

Color text can aid in program visibility. It’s easier to identify
different parts of the screen when the text is colored
differently. Add in Unicode fancy characters, and the text
terminal has a potential for output more interesting than just
letters and numbers.

13.4.1 Understanding terminal colors

Text output in the terminal windows can be whatever the
boring default is, such as green on black, but your options
aren’t limited to the terminal window’s settings. Your
programs can generate a variety of colors—eight foreground
and eight background for up to 64 combinations, many of
them annoying or invisible. To make this rainbow magic
happen, the program outputs ANSI color sequences. As most
terminals are ANSI-color compatible, all you need to know
are the proper ANSI escape sequences.

An ANSI escape sequence is a series of characters, the first
of which is the escape character, ASCII 27, hex 1B. This
character must be output directly; you can’t press the
keyboard’s Esc key to pull off this trick. The remainder of the
characters follow a pattern, which are numerical codes
representing various colors. The final character is m, which
signals the end of the escape sequence, as illustrated in
figure 13.4.

Figure 13.4 The format for an ANSI color text escape sequence

Text output that follows the ANSI sequence appears in the
specified attributes or colors. To change colors, issue a new
escape sequence. To restore terminal colors, a reset escape
sequence is given.

Table 13.1 lists the basic character effects or attributes
available with ANSI escape sequences. The escape character
is listed as hex value \x1b, how it appears as a character in
C.

Table 13.1 ANSI text effects

Effect Code Sequence

Reset 0 \x1b[0m

Bold 1 \x1b[1m

Faint 2 \x1b[2m

Underline 4 \x1b[4m

Blinking 5 \x1b[5m

Inverse 7 \x1b[7m

Not all attributes shown in table 13.1 are available in every
terminal window. Just in case, the test program shown in the
next listing creates defined constant strings for the escape
sequences and then outputs each one a line at a time.

Listing 13.16 Source code for ansi01.c

#include <stdio.h>

#define RESET "\x1b[0m"
#define BOLD "\x1b[1m"
#define FAINT "\x1b[2m"
#define UNDERLINE "\x1b[4m"
#define BLINK "\x1b[5m"
#define INVERSE "\x1b[7m"

int main()
{
 printf("%sBold text%s\n",BOLD,RESET);
 printf("%sFaint text%s\n",FAINT,RESET);
 printf("%sUnderline text%s\n",UNDERLINE,RESET);
 printf("%sBlinking text%s\n",BLINK,RESET);
 printf("%sInverse text%s\n",INVERSE,RESET);

 return(0);
}

Running the program for ansi01.c yielded mixed results on
my various computers. The Mac Terminal window shows the
output the best, including blinking text, which is most

annoying. Ubuntu Linux in Windows 10/11 shows underlined
text well. The rest of my computers were a mixed bag.
Again, remember that you can obtain another terminal
program if the one your OS provides shows less than
spectacular results.

The ANSI color code sequences are shown in table 13.2.
Codes in the 30s represent foreground colors; codes in the
40s are background colors.

Table 13.2 ANSI color-code escape sequences

Color Foreground

Code

Background

Code

Foreground

Sequence

Background

Sequence

Black 30 40 \x1b[30m \x1b[40m

Red 31 41 \x1b[31m \x1b[41m

Green 32 42 \x1b[32m \x1b[42m

Yellow 33 43 \x1b[33m \x1b[43m

Blue 34 44 \x1b[34m \x1b[44m

Magenta 35 45 \x1b[35m \x1b[45m

Cyan 36 46 \x1b[36m \x1b[46m

White 37 47 \x1b[37m \x1b[47m

Codes can be combined in a single sequence, as shown back
in figure 13.4. For example, if you want red text on a blue
background, you can use the sequence \x1b[31;44m,
where 31 is the code for red foreground and 44 is the code
for blue background.

The code for ansi02.c in the next code listing cycles
through all the permutations of foreground and background

colors. Run the program to ensure that the terminal window
is capable of outputting colors, plus to see how nifty it is to
do color text output in C. (Well, it’s a terminal feature, not
really part of the C programming language.)

Listing 13.17 Source code for ansi02.c

#include <stdio.h>

int main()
{
 int f,b;

 for(f=0 ; f<8; f++) ❶
 {

 for(b=0; b<8; b++) ❷
 {

 printf("\x1b[%d;%dm %d:%d ", ❸

 f+30,b+40,f+30,b+40 ❹
);
 }

 printf("\x1b[0m\n"); ❺
 }

 return(0);
}

❶ Loops through foreground values

❷ Loops through background values

❸ Outputs the escape sequence and the two values

❹ Updates the numbers here

❺ Resets and starts a new line

The generated output from ansi02.c—which I won’t show
here because this book isn’t in color—is a grid of all the color
combinations. Output with the same foreground and
background colors makes the text invisible, but it’s there.

This color output can be used in your text mode programs to
spice up the screen or to call attention to one part of the
output or another. Keep in mind that the output is still
streaming, one character after another. Also, not all
terminals properly render the character attributes.

13.4.2 Generating a tight-but-colorful calendar

It’s possible to squeeze more months on a text screen if you
eliminate the space between the days. On a plain text
screen, such a move would render the month’s data output
useless to all but the most insane nerd. Yet it’s possible to
output a month with no spaces between the days—if you
change each day’s colors.

In figure 13.5, you see single month output from my year
program (so far), the cal program, and then from a version
of my year program with no spaces between the dates.
Which is easiest to read?

Figure 13.5 Comparing output from various calendar programs

I would offer that the calendars shown in figure 13.5 rank,
from left to right, in order of easiest to read. However, the
easier the calendar is to read, the more text screen real
estate it occupies. You can always adjust the terminal
window size, but a larger window is often impractical for
many of the fun times to be had in text mode.

The year configuration on the right in figure 13.5 allows for
more months to pack into a typical 80-by-24 character
terminal window. In fact, you can march four columns of
months across the terminal window when using this dense
format. You can almost see all 12 months as well, though
not the complete bottom row. The problem is that the
numbers all run together—unless you color-code them.

Figure 13.6 shows a full year’s worth of output with no
spaces between dates in each month. The dates are color-

coded, as are the weekday headers. You can’t see the colors
in this book, but even in grayscale, it’s far easier to visually
separate the days in a month.

Figure 13.6 Color-coded days allow the tight calendar to be useful.

To update the year series of programs to output a tighter
annual calendar, start with the year03.c source code. Color
output requires no additional headers or libraries—just that
you add the ANSI escape sequences to output color. These
updates are found in the source code file year04.c,
available in the online repository. Follow along as I review
each update to the code.

First, I added the following defined constants, which help
output colors, foreground and background:

#define BOLD 1
#define BLACK 0
#define CYAN 6
#define WHITE 7
#define FG 30
#define BG 40

The updated year program uses only the colors listed.
Constants FG and BG are added to the other values to create
the various foreground and background color combinations.

Second, to output dates, I added the color_output()
function, shown in the next listing. Its job is to output every
other date of the month in a different color. The if decision
alternates between odd and even days, with variable d
passed as an argument. The defined constants shown earlier
are used in the printf() statement to set color output.

Listing 13.18 The color_output() function from year04.c

void color_output(int d)
{

 if(d%2) ❶

 printf("\x1b[%d;%dm%2d", ❷
 FG+BLACK,
 BG+WHITE,
 d
);
 else

 printf("\x1b[%d;%dm%2d", ❸
 FG+WHITE,
 BG+CYAN,
 d
);
}

❶ The condition is true for odd-numbered values of d.

❷ Outputs odd days with a black foreground and white background

❸ Outputs even days with a white foreground and cyan background

Along with the addition of the color_output() function, the
printf() functions that output the current day must be
replaced. They go from this:

printf(“ %2d “,day);

to this:

color_output(day);

I also changed the length of the month and day strings. The
month names are shortened to better fit in the tighter
layout:

const char *months[] = {
 "Jan", "Feb", "March", "April",
 "May", "June", "July", "Aug",
 "Sep", "Oct", "Nov", "Dec"
};

The weekday headings are reset to two characters long. Like
the days of the month, the weekday headings must be color-
coded. I couldn’t think of a clever way to code the weekday
header without creating another array, so a series of printf()
statements output the days, alternating bold and normal
attributes:

printf("\x1b[%dm%s",BOLD,"Su");
printf("\x1b[0m%s","Mo");
printf("\x1b[%dm%s",BOLD,"Tu");
printf("\x1b[0m%s","We");
printf("\x1b[%dm%s",BOLD,"Th");
printf("\x1b[0m%s","Fr");
printf("\x1b[%dm%s",BOLD,"Sa");
printf("\x1b[0m ");

Finally, the space between months is reduced to two. Various
putchar('\n') statements are replaced by printf()
statements that also output the ANSI escape sequence to
reset the colors back to normal. This change avoided color
spill at the end of each line of output. In fact, color spill is
something you must be aware of when coding color output:
always terminate the color output, resetting it when colored
text is no longer required. The reset sequence is
\x1b[0m;.

Output for the program generated by year04.c appears
earlier, in figure 13.6. The BOLD attribute looks faint in the
image because of how the terminal window sets bold color.
Again, color output differs from terminal to terminal.

EXERCISE 13.6

What is missing from the output for the year04.c code,
and missing in figure 13.6 as well, is a highlight for the
current day of the year.

Your task for this exercise is to modify the source code for
year04.c to detect the current day of the year and output
this one specific day in a special color. Obviously, if the
calendar isn’t showing the current year, your code won’t
highlight today’s date. So, your solution must detect
whether the current year is shown.

My solution is named year05.c, available in the online
repository. Comments in the text explain what I did. My
chosen colors for the current day of the year are red text on
a black background.

13.4.3 Coloring holidays

The final step to the year series of programs, and for both
this and the preceding chapter, is to generate an annual
calendar with highlighted holidays. This program requires an
update to the year04.c source code but also the inclusion
of the isholiday() function from chapter 12. The output uses
the return value from isholiday() to color-code holiday dates,
making them visible in the output.

To accomplish this task, three separate files are required:

The new source code file, year05.c, which calls the
isholiday() function and color-codes holiday dates

A source code file, isholiday.c, containing the
isholiday() function and its support functions
A header file, holiday_year.h, which contains
resources for the final program: header files to include,
defined constants, the holiday structure definition, and
the function prototype for isholiday()

These files are available in the online repository. Review
them as I cover the changes to the code.

To update the year04.c source code to year05.c, several
updates are required. The first is the addition of the
color_holiday() function, which outputs a holiday’s value
with white text on a red background:

void color_holiday(int d)
{
 printf("\x1b[%d;%dm%2d",
 FG+WHITE,
 BG+RED,
 d
);
}

Next, the for loop that outputs the first day of the month is
updated to scan for any holidays. The following listing shows
the updates—specifically, how holiday structure h is filled
to make the isholiday() function call. Also note that if a
holiday falls on today’s date, the color used is for the
holiday, not the color for today’s date.

Listing 13.19 The updated for loop for the first day of the week in year

06.c

for(c=0; c<COLUMNS; c++)
{

 h.month = month+c; ❶
 h.year = year;
 h.name = NULL;

 day = 1; ❷

 for(dow=0; dow<7; dow++) ❸
 {

 if(dow<dotm[month+c]) ❹
 {
 printf(" ");
 }
 else
 {

 h.day = day; ❺
 h.wday = dow;

 if(isholiday(&h)==1) ❻

 color_holiday(day); ❼

 else if(today->tm_year+1900==year && ❽
 today->tm_mon==month+c &&
 today->tm_mday==day
)
 color_today(day);
 else

 color_output(day); ❾

 day++; ❿
 }
 }

 printf("\x1b[0m "); ⓫

 dotm[month+c] = day; ⓬
}

printf("\x1b[0m\n"); ⓭

❶ These items are consistent throughout the first week.

❷ The month starts on day 1.

❸ Loops through the first week, Sunday through Saturday

❹ Outputs blanks before the first of the month starts

❺ Updates holiday structure h with the current day and day of the week

❻ Tests for holidays

❼ Colors the holiday

❽ Tests for today’s date and color

❾ Outputs a regular date

❿ Increments the day counter

⓫ Resets the color output

⓬ Updates the first day of next week

⓭ Resets the color output

Changes similar to those shown in listing 13.19 are made in
the next for loop, which outputs the remaining days of the
month.

To build the program, you must build both year06.c and
isholiday.c into a single program. I use the following
command, which generates a program file named year.
Also, don’t forget to link in the math library, shown as the
last argument:

clang -Wall year06.c isholiday.c -o year -lm

The program’s output shows the current year—or any year
specified at the command prompt—highlighting all the
holidays and today’s date, providing today isn’t a holiday.
It’s compact, with nearly the entire year fitting in a standard
terminal window. This type of output works well only when
you color-code the dates.

14 Lotto picks

Back when I was a C programmer hatchling, I returned
from a trip to Las Vegas eager to write my own keno
program. Keno is a random-number game, a cross between
the lottery and bingo. You pick several numbers in the
range from 1 through 80. Payouts depend on how many
numbers you choose and guess correctly.

In the process of writing the code, it became apparent that
the payouts offered in the casino were nowhere close to the
true odds. For example, if you pick 10 numbers and guess
correctly, you win $200,000. But the odds of picking 10 out
of 10 numbers in a range of 80 numbers are 1:8,911,712.
You should win $8,911,712, right? But at least they have
killer shrimp cocktail for a dollar. Or they once did.

The process of programming games of chance clues you in
to several interesting and useful coding areas, including
these:

Understanding the odds and probability

Calculating the odds

Exploring random numbers

Simulating drawing lotto balls
Running simulations to test the odds

I acknowledge that I’m not a math genius. I understand
math, but I got a D in calculus, which was a passing grade,
so that’s my limit. I’m not up to par when it comes to the
realms of probability and such. After all, it’s the computer
that does the math. Your job is to plug in the proper
equation and do all those programming things that keep the
computer from crashing. The odds on this skill are pretty
good.

14.1 A tax for those who are bad at math

I play the Powerball, even though my rational brain knows
that I have scant chance of winning. My emotional brain
argues, “Well, someone has to win!” Satisfied, I dump $20
on a sheaf of random lotto picks and fantasize about what
I’ll do with my never-to-appear loot.

It’s this hope that keeps people playing games of chance.
Whether it’s the lotto, keno, or any casino game (except for
poker and perhaps blackjack), people rely upon desire more
than a clean understanding of the math. That’s because the
math isn’t in your favor.

14.1.1 Playing the lottery

Rumor has it that a lottery financed the Great Wall of China.
Even if the rumor is untrue, governments have used
lotteries for centuries to finance various projects. The early
United States used a lottery to fund defense.

Lotteries are used for other purposes as well. The Great
Council of Genoa used a lottery to choose its members,
drawing several names from a larger pool. Citizens would
wager on the winners, calling the game lotto. It eventually
grew so popular that lotteries were held by drawing
numbers instead of names.

The goal of a good lottery is to raise funds, either for a
project or to distribute as prize money. A portion of the
funds always goes to pay the winners. To keep the lottery
successful and popular, the prize money is typically spread
across many winners. For most humans, seeing a return of
two or three dollars after buying $20 worth of tickets is
“winning.”

In the multistate Powerball lottery, numbers are printed on
palm-size balls and drawn sequentially from a machine.
After five white balls are drawn, with a range from 1
through 69, a single red “power ball” is drawn, with a range
from 1 to 26. Various side bets are available, but the desire
is to match all five numbers drawn, plus the red power ball,
to win the grand prize. If no one guesses all six numbers,
the prize money rolls over—sometimes accumulating to the
hundreds of millions of dollars.

The kind of lottery simulated for the programs in this
chapter is a random-number lottery, like Powerball. Random
numbers are drawn to represent the balls from the
Powerball lottery. Important to the simulation is not to draw
the same number twice, which is impossible in a physical

lottery. Two methods of preventing duplicate numbers from
being drawn are offered in this chapter.

14.1.2 Understanding the odds

To dampen your glee over potential lottery winnings, I must
discuss the odds. These are the numbers that explain the
ratio of the probability of something happening or not
happening. I desire not to get too heavily into the math, nor
to discuss the difference between statistical odds and
gambling odds. Just stare at figure 14.1.

Figure 14.1 Some math formula-things explain the odds.

Suppose that you’re betting on the roll of a die. Here is how
you would calculate your odds of guessing the right number,
one out of six:

odds = 1 / (1+5) = 1/6 = 0.166...

You have a 16.6% chance of guessing correctly. To calculate
your odds of losing, change the numerator in the top
equation in figure 14.1 so that Chances of losing replaces
Chances of winning. Here’s the math for the dice roll:

odds = 5 / (1+5) = 5/6 = 0.833...

You have an 83.3% chance of losing. See how much stating
the odds in this manner dashes all hope? It’s depressing.

Odds are also expressed as a colon ratio, as shown on the
bottom in figure 14.1. For the dice example, your odds of
winning are 1 in 5, often expressed as 5:1 or “five to one.”
The odds aren’t 1:6 because one of the choices wins but
five lose. Therefore, the odds are expressed 5:1 with the
same win/lose percentages: 16.6 and 83.3.

For a game like Powerball, the odds are calculated as
numbers are drawn but also considering that the balls aren’t
drawn in any order. These items must be considered to
properly calculate the odds.

For example, if you could bet on only one ball (and the
minimum bet for Powerball is three numbers), the odds are
68:1 or 1/(68+1), which is a 1.45 percent chance of
winning. If you bet on drawing two balls, the odds for the
second ball become 67:1, and then 66:1 for the third ball,
and so on. If you do the math, you get a very small
number:

1/69 * 1/68 * 1/67 * 1/66 * 1/65 = 7.415e-10

Inverting the result, you see that your probability of winning
is 1:1,348,621,560. The problem with this value is that the
permutations of the numbers drawn must also be
considered. If your guesses are 1, 2, 3, 5, and 8, the first

ball could be any of those numbers. The second ball could
be any four of those numbers, and so on. The number of
balls from which the numbers are drawn—69, 68, 67, 66,
65—must be divided by 5 * 4 * 3 * 2 * 1, or 5! (five
factorial):

(69 * 68 * 67 * 66 * 65) / (5 * 4 * 3 * 2 * 1) = 11,238,513

Your chance of correctly picking five numbers from a 69-ball
lottery is 1:11,268,513. Incidentally, the Powerball lottery
pays $1 million if you succeed in accurately picking the five
numbers. The probability is 11 times that.

14.1.3 Programming the odds

At university, I avoided computers because I thought you
had to be a math genius to understand them. Poppycock!
It’s the computer that does the math. The preceding section
introduced the formulas for calculating the odds. The next
step is to program them.

The next listing shows the code for a simple odds calculator.
You input the chances of something happening, such as
guessing the correct roll of a dice. Then you input the
chances of it not happening. The computer uses the formula
shown earlier (refer to figure 14.1) to output the results.
The source code is available in the online repository as
odds01.c.

Listing 14.1 Source code for odds01.c

#include <stdio.h>

int main()
{

 int ow,ol; ❶

 printf("Chances of happening: ");
 scanf("%d",&ow);
 printf("Chances of not happening: ");
 scanf("%d",&ol);

 printf("Your odds of winning are[CA] %2.1f%%, or %d:%d\n", ❷

 (float)ow/(float)(ow+ol)*100, ❸
 ow,
 ol
);

 return(0);
}

❶ ow = odds of winning, ol = odds of losing

❷ Two percent signs are used in the format string to output a single percent sign.

❸ The equation

To test the program, use the dice example shown earlier in
this section:

Chances of happening: 1
Chances of not happening: 5
Your odds of winning are 16.7%, or 1:5

If you guess one of the six sides of a die, the chances of it
happening are one, and the chances of it not happening are
five. The odds of winning are 16.7%, or one in five.

Say you want to calculate the odds of drawing a heart from
a deck of cards:

Chances of happening: 13
Chances of not happening: 39

Your odds of winning are 25.0%, or 13:39

Because hearts is one of four suits, your odds are 25% or
one in four—though the program doesn’t reduce the ratio.
Even so, the answer is accurate.

To calculate multiple draws, as in a lottery, more math is
required: The decreasing number of balls must be
multiplied, as well as permutations of the number guessed.
This formula is shown earlier, but coded in the following
listing. The product of the total items is calculated in
variable i; the product of the items to draw is calculated in
variable d.

Listing 14.2 Source code for odds02.c

#include <stdio.h>

int main()
{
 int items,draw,x;

 unsigned long long i,d; ❶

 printf("Number of items: ");
 scanf("%d",&items);
 printf("Items to draw: ");
 scanf("%d",&draw);

 i = items;
 d = draw;

 for(x=1;x<draw;x++) ❷
 {

 i *= items-x; ❸

 d *= draw-x; ❹
 }
 printf("Your odds of drawing %d ",draw);
 printf("items from %d are:\n",items);

 printf("\t1:%.0f\n",(float)i/(float)d); ❺

 return(0);
}

❶ Even an unsigned long value may not be large enough to handle the odds for some

calculations.

❷ Loops through the number of draws

❸ Obtains the product of each item, decreasing in value

❹ Obtains the product of each drawing permutation, decreasing in value

❺ Casts the variables to obtain an accurate result

I had to keep enlarging the storage space for variables i
and d in the code, from int to long, to unsigned long. The
product of multiple values grows quickly. Still, the code
renders accurate results for the Powerball odds (not
counting the Powerball itself):

Number of items: 69
Items to draw: 5
Your odds of drawing 5 items from 69 are:
 1:11238513

This result matches the value shown earlier, 11,238,513. As
usual, many modifications to the code are possible.

EXERCISE 14.1

One thing that’s missing from the source code for
odds02.c is error-checking. What happens if the user
inputs 10 items but 12 to draw? What happens when 0 is
input for either value? Your task for this exercise is to
modify the code to confirm that the input of either value
isn’t 0, and that the number of items drawn doesn’t exceed
the number of items available.

My solution, chock-full of comments, is available in the
online repository as odds03.c. Use the source code for
odds02.c as your starting point.

EXERCISE 14.2

Another good improvement to the code is to add commas to
the output. After all, which is better: 1:11238513 or
1:11,238,513? Human eyeballs appreciate commas.

Your task for this exercise is to add commas to the odds
numeric output. I recommend that you write a function to
accept a floating-point value as input. Assume that the
value has no decimal portion. Return a string that
represents the value, but with commas placed every three
positions, as shown earlier. My solution is the commify()
function, available in the source code file oddsd04.c,
found in the online repository.

14.2 Here are your winning numbers

Those lottery numbers you find on a fortune cookie fortune
were most likely computer generated. I find this
development disappointing. Instead, wouldn’t it be
charming to imagine some wise old Chinese woman sitting
in an incense-filled room, actively consulting with the spirit
world for inspiration? But, no. The truth is that the numbers
were spewed forth from a computer—randomly generated.

Sure, they could be correct guesses and win you a fortune,
but the odds are against it.

To have the computer pick your lottery winners requires
programming random numbers. These must simulate the
randomness of the magical lottery-ball machine that
generates the actual numbers drawn in Powerball. Unlike in
the real world, your lottery simulation must ensure that the
values drawn are in range. Further, you can’t draw the same
number twice. Your lottery picks must be unique, just like in
the real world.

14.2.1 Generating random values

I can’t think of a computer game that doesn’t rely upon
random numbers. Even complex chess-playing software
must still decide its first move. A spin of the old random-
number generator is what makes the decision.

Computers don’t generate truly random numbers. The
values are referred to as pseudo random because, if you
had all the data, you could predict the values. Still, random-
number generation is central to setting up an interesting
game—or picking lottery numbers. The required tool is the
rand() function, prototyped in the stdlib.h header file:

int rand(void);

The function takes no arguments and returns an integer
value in the range zero through RAND_MAX. This value for
most compilers is set to 0x7ffffffff or 2,147,483,647. An

improved version of the function, random(), works similarly
to rand(), though this function isn’t a part of the standard C
library.

The source code shown next works like one of the first
programs I ever wrote in BASIC, years ago. It spews out a
grid of random numbers, five rows by five columns. The
rand() function generates the value saved in variable r and
output in a printf() statement.

Listing 14.3 Source code for random01.c

#include <stdio.h>

#include <stdlib.h> ❶

int main()
{
 const int rows = 5;
 int x,y,r;

 for(x=0; x<rows; x++) ❷
 {
 for(y=0; y<rows; y++)
 {

 r = rand(); ❸

 printf("%d ",r); ❹
 }

 putchar('\n'); ❺
 }

 return(0);
}

❶ For the rand() function

❷ Nested loop to process the grid

❸ Obtains the random integer

❹ Outputs the random integer

❺ Ends the row

The code shown in listing 14.3 serves its purpose. It
generates 25 random values, and the output is completely
ugly:

1804289383 846930886 1681692777 1714636915 1957747793
424238335 719885386 1649760492 596516649 1189641421
1025202362 1350490027 783368690 1102520059 2044897763
1967513926 1365180540 1540383426 304089172 1303455736
35005211 521595368 294702567 1726956429 336465782

The numbers are huge, which is within the range generated
by the rand() function, from zero through RAND_MAX. To
output values in a different range, you can employ the
modulo operator. Here is the expression I use:

value = rand() % range;

The variable value is between 0 and the value of range. If
you want the value to be between 1 and range, I use this
version of the expression:

value = rand() % range + 1;

To set the random-number output to values from 1 through
100, change two statements to modify the source code for
random01.c:

r = rand() % 100 +1;
printf("%3d ",r);

The first statement limits the rand() function’s output to the
range of 1 through 100. The second statement aligns
output, restricting the value to a three-character-wide

frame, followed by a space. These changes are incorporated
into the source code file random02.c, available in the
online repository. Here is the updated output:

 84 87 78 16 94
 36 87 93 50 22
 63 28 91 60 64
 27 41 27 73 37
 12 69 68 30 83

Alas, if you run the program twice, the same numbers are
generated. This result doesn’t bode well for your lottery
picks because the desire is to be random.

If you’ve ever coded random numbers, you know that the
solution is to seed the randomizer. The srand() function,
also prototyped in the stdlib.h header file, handles the
task:

void srand(unsigned int seed);

The seed argument is a positive integer value, which the
rand() function uses in its random-number calculations. The
srand() function needs to be called only once. It’s often
used with the time() function, which returns the current
clock-tick value as a seed:

srand((unsigned)time(NULL));

The time() function is typecast to unsigned and given the
NULL argument. This format ensures that the clock-tick
value is properly consumed by the srand() function, and a

new slate of random numbers is generated every time the
program runs.

(If you use the random() function, it has a similar seed
function, srandom().)

Improvements to the random02.c code are included with
random03.c, available in the online repository. The
time.h header file is also included. Here is a sample run:

 8 53 95 12 93
 76 92 59 45 21
 32 65 73 95 85
 62 55 9 89 16
 59 13 33 61 74

And here’s another sample run, just to show a different
slate of random numbers:

 14 49 92 92 56
 80 95 41 57 66
 8 99 62 86 73
 26 32 23 55 38
 98 66 94 20 98

By the way, because a time_t value (returned from the
time() function) is used, if you run the program rapidly in
succession, you see the same values generated. This is a
weakness of seeding the randomizer with a clock-tick value,
but it shouldn’t be a problem for most applications.

14.2.2 Drawing lotto balls

Into the tumbler fall 69 balls, numbered 1 through 69. The
balls are agitated, popping up and down as they stir for a
few tense moments. Using some sort of magic, a single ball
is drawn from the lot, rolling down a tube onto a slide.
Eager but stupid people tighten their focus to witness the
number revealed. No, it probably wasn’t one of their picks—
but they have four more chances! Hope remains high. This
process is how the Powerball lottery works.

For my lottery simulation, I use the basic premise of the
Powerball: randomly draw five numbers in the range from 1
through 69. The sixth, the Powerball, adds another level of
complexity, and it can be programmed later, but not in this
chapter.

Drawing lottery numbers is like drawing any random
sequence of items, such as playing cards. My first attempt
at the simulation is shown in the next listing, the source
code for lotto01.c. It borrows from the random series of
programs shown earlier in this chapter but uses a for loop
to output five random numbers in the range from 1 through
69.

Listing 14.4 Source code for lottt01.c

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

int main()
{

 const int balls = 69, draw = 5; ❶
 int x,r;

 srand((unsigned)time(NULL)); ❷

 printf("Drawing %d numbers from %d balls:\n", ❸
 draw,
 balls
);

 for(x=0; x<draw; x++) ❹
 {

 r = rand() % balls+1; ❺

 printf("%2d\n",r); ❻
 }

 return(0);
}

❶ Sets the constants to represent total balls and number to draw

❷ Seeds the randomizer

❸ Informs the user

❹ Loops to draw the given number of balls

❺ Generates a random value in range

❻ Outputs the value

Sometimes I think the code used to generate lottery
winners on fortune cookie fortunes is just as simple as that
presented in listing 14.4. Here is the output:

Drawing 5 numbers from 69 balls:
17
64
38
 1
26

True, the output could be prettier. An update is presented in
a few pages. But if you run the code often enough, you
eventually see output like this:

Drawing 5 numbers from 69 balls:
44
19

19
10
33

Because the code doesn’t check previous numbers drawn,
values can repeat. Such output it not only unrealistic—it’s
unlucky.

The code can’t determine whether a value drawn is a repeat
unless the values drawn are stored and examined. To do so,
an array is necessary, dimensioned to the number of balls
drawn. Each random value drawn must be stored in the
array, and then the array is examined to ensure that no two
values repeat.

For my first approach to this problem, I use the winners[]
array, shown next, an update to the lotto01.c code. A for
loop fills the array with random values. Next, a nested for
loop works like a bubble sort to compare each value in the
array with other values. When two values match, the
second is replaced with a new random value, and the loop is
reset to scan again.

Listing 14.5 Source code for lottt02.c

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

int main()
{
 const int balls = 69, draw = 5;
 int x,y;

 int winners[draw]; ❶

 srand((unsigned)time(NULL));

 printf("Drawing %d numbers from %d balls:\n",
 draw,
 balls
);

 for(x=0; x<draw; x++) ❷
 {
 winners[x] = rand()%balls+1;
 }

 for(x=0; x<draw-1; x++) ❸

 for(y=x+1; y<draw ; y++) ❹

 if(winners[x]==winners[y]) ❺
 {

 winners[y] = rand()%balls + 1; ❻

 y = draw; ❼

 x = -1; ❽
 }

 for(x=0; x<draw; x++) ❾
 printf("%2d\n",winners[x]);

 return(0);
}

❶ Dimensions the array to hold the number of draws

❷ Fills the array with random values, one through balls

❸ The outer loop moves through the array to the next-to-last element, draw-1.

❹ The inner loop moves through the array from the x+1 element to the last element.

❺ Compares each value to the rest of the values

❻ For a match, draws the repeated value again

❼ Forces the y loop to stop by setting the termination value

❽ Resets the x loop back to start (-1 because the loop increments x each time it runs)

❾ Outputs the results

The improved version of the lotto program checks for
repeated values and replaces them. The output looks the
same as for the first version of the program, but no
numbers repeat. You’re all ready to plunk down your money

for a chance at riches, yet the code presents room for
improvement.

EXERCISE 14.3

The output from the existing rendition of the lotto program
is tacky. It looks nothing like the back of a fortune cookie
fortune. Two ways to improve it are to sort the numbers and
output them on a single line to improve readability. For
example:

Drawing 5 numbers from 69 balls:
 5 - 10 - 14 - 19 - 33

The output is now linear, ready for printing and saving that
old Chinese woman time that she can spend with her
grandkids. My solution for this exercise is titled
lotto03.c, and it’s available in the online repository.

14.2.3 Avoiding repeated numbers, another

approach

The key to any lottery simulation is to ensure that no two
numbers are drawn twice. The preceding section offered
one method. Another method, one that I’ve used many
times, is to simulate all the numbers or balls in an array. As
random numbers are generated, elements of the array are
updated to reflect that the ball is no longer available. I find
this approach much easier to code, though perhaps not as
easy to explain.

Figure 14.2 illustrates an array numbers[] that’s been
initialized with all zeros. The array’s elements represent
balls in a lottery. When an element has the value zero, it
means that the ball hasn’t yet been drawn. When a ball is
drawn, its corresponding element in the array is set to 1, as
shown in the figure. For example, if the random number
generator returns 12, the 12th element of the array is set to
one.

Figure 14.2 Elements in an array representing lotto balls

To confirm that a number is available to draw, the code
tests the related array element. If the element is 0, the
number is available and it’s set to 1. If the element is 1, it’s
skipped and another random number is generated. The
following code performs this test:

for(x=0; x<draw; x++)
{
 do
 r=rand()%balls;
 while(numbers[r]==1);
 numbers[r] = 1;
}

The numbers[] array represents the simulated lotto balls.
It’s dimensioned to the number of balls available, 69.
Variable draw is the number of balls to draw—five, in this
instance.

The do-while loop repeats whenever the random array
element numbers[r] is equal to 1. This test ensures that a
ball isn’t drawn twice. Otherwise, if the element is zero,
meaning that the ball is available, it’s “drawn” by setting its
value to one: numbers[r] = 1. This statement flags the
ball as drawn and prevents it from being drawn again.

The variable balls helps to truncate, via the modulus
operator, the rand() function’s return value:
r=rand()%balls. However, this value isn’t increased by
1. Because the code deals with an array, the first value
must be 0. Therefore, the numbers drawn are in the range
of 0 to balls-minus-1, or 68 in this example. This result can
be adjusted during output to reflect the true lottery ball
number.

The rest of the code to simulate a lottery drawing is
presented in the following listing. The numbers[] array is
initialized, the balls are drawn, and then the result is

output. Because the numbers[] array is processed
sequentially in the final for loop, the winning numbers need
not be sorted before they’re output.

Listing 14.6 Source code for lotto04.c

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
int main()
{
 const int balls = 69, draw = 5;
 int x,r,count;
 int numbers[balls];

 srand((unsigned)time(NULL));

 printf("Drawing %d numbers from %d balls:\n",
 draw,
 balls
);

 for(x=0; x<balls; x++) ❶
 {
 numbers[x] = 0;
 }

 for(x=0; x<draw; x++) ❷
 {
 do
 r=rand()%balls;
 while(numbers[r]==1);
 numbers[r] = 1;
 }

 count = 0;

 for(x=0; x<balls; x++) ❸
 {

 if(numbers[x]) ❹
 {

 printf(" %d",x+1); ❺
 count++;

 if(count<draw) ❻
 printf-");
 }
 }

 putchar('\n');

 return(0);
}

❶ Initializes the array

❷ Selects the random values

❸ Processes the array to cull the winning numbers

❹ If the element is nonzero (1), the ball was drawn.

❺ Outputs the ball number, plus one to account for the array starting at element 0

❻ After all but the last number, outputs a dash separator

The lotto04.c source code file shown in listing 14.6 is
available in the online repository. Here is the output:

Drawing 5 numbers from 69 balls:
 1 - 25 - 37 - 39 - 40

No numbers are repeated, and the output is sorted. Good
luck!

14.3 Never tell me the odds

If only you could play the lottery forever. Or perhaps you’re
eccentric enough to believe that you can purchase
11,238,513 tickets, each with a different number
combination, and somehow come out ahead. But the
system just doesn’t work that way. Oh, I could wax on
about the various techniques to “win” the lottery, but foo on
all that.

Fortunately, you don’t need to purchase a bunch of lottery
tickets to see how well you would fare playing a game. The

computer can not only generate lotto picks but also match
those picks with other picks. You can run simulations to
determine how many random draws it takes before the
computer guesses which numbers the computer chose. As
long as the coding is proper, you can put the odds to the
test. Alas, you just don’t win any money.

14.3.1 Creating the lotto() function

To simulate multiple draws in a lottery, you must modify the
existing lotto code so that the balls are drawn in a function,
which I call lotto(). This improvement to the code allows the
function to be called repeatedly, representing the original
numbers to match as well as the guesses made.

I toiled a few times writing the lotto() function: should it
return the random numbers drawn, or should they be
passed in an array? I finally chose to pass an array, which
works as a pointer within the function. This method allows
the array’s elements to be modified directly, so the function
returns nothing.

The lotto() function, shown next, uses similar statements as
the main() function in the lotto series of programs shown
earlier in this chapter: the numbers[] array now dwells
within the lotto() function because its contents need not be
retained between calls. After the array is initialized, a for
loop sets the random element values representing numbers
drawn. This operation is followed by a second for loop that

processes the entire numbers[] array, filling elements
from the passed array.

Listing 14.7 The lotto() function from lotto05.c

void lotto(int *a) ❶
{

 int numbers[BALLS]; ❷
 int x,y,r;

 for(x=0; x<BALLS; x++) ❸
 {
 numbers[x] = 0;
 }

 for(x=0; x<DRAW; x++) ❹
 {
 do
 r=rand()%BALLS;
 while(numbers[r]==1);
 numbers[r] = 1;
 }

 y = 0; ❺

 for(x=0; x<BALLS; x++) ❻
 {

 if(numbers[x]) ❼
 {

 *(a+y) = x; ❽

 y++; ❾
 }

 if(y==DRAW) ❿
 break;
 }
}

❶ The array is referenced as a pointer in this function.

❷ This array stays local to the lotto() function.

❸ Initializes the numbers[] array

❹ Randomly draws items in the array

❺ Variable y serves as an index into the passed array.

❻ Fills the passed array’s elements with the random numbers drawn

❼ If the ball has been drawn . . .

❽ . . . sets the element number in the passed array

❾ Increments the index

❿ If the passed array is full, breaks the loop early

The defined constants BALLS and DRAW are the same as
the const int values shown in early versions of the lotto
programs. These are made into defined constants so that
their values are available to all functions in the source code
file.

The main() function calls the lotto() function, and then it
outputs the contents of the array passed. The next listing
shows the main() function, which again is based on parts of
the lotto series shown earlier in this chapter.

Listing 14.8 The main() function from lotto05.c

int main()
{
 int x;

 int match[DRAW]; ❶

 srand((unsigned)time(NULL));

 printf("Trying to match:");

 lotto(match); ❷

 for(x=0; x<DRAW; x++) ❸
 {
 printf(" %d",match[x]+1);
 if(x<DRAW-1)
 printf(" -");
 }
 putchar('\n');

 return(0);
}

❶ Uses an array as the argument for the lotto function

❷ Calls the lotto() function, filling array match

❸ Outputs the array’s elements, the lottery “winners”

The full source code for lotto05.c is available in the
online repository. Here is a sample run:

Trying to match: 32 - 33 - 45 - 55 - 61

The output looks like all the other lotto programs so far,
though with the lotto() function set, it’s now possible to
draw multiple lottery numbers in the same code. After all,
the prompt above says, “Trying to match.” The next step in
the program’s generation is to obtain another set of random
lottery ball picks to see whether they match the first
numbers drawn.

14.3.2 Matching lottery picks

The lotto() function allows the code to repeatedly pull
lottery numbers over and over, trying to match the original
draw. To do so, I duplicated the for loop and output
statements in the lotto05.c code, but with a second
array, guess[]. This change appears in the source code file
lotto06.c, which outputs a second round of lottery
numbers to see whether the two draws match. Here is
sample output:

Trying to match: 2 - 18 - 38 - 47 - 69
 Your guess: 6 - 10 - 34 - 35 - 49

I’m not showing the full source code here because it doesn’t
do anything new—it just repeats the same block of code but
with a new array, guess[]. This array is passed to the
lotto() function and then output, as shown earlier. The
result is two lottery number draws. Do they match?
Probably not.

Even if the two arrays matched, you must perform a visual
inspection to confirm. In the previous sample output, they
don’t. But why do the work yourself when the computer is
not only bored but all too eager?

To make the comparison between two sets of lottery ball
draws, I use the winner() function, shown here. As
arguments, it consumes two arrays, referenced as integer
pointers. Nested for loops compare each array value from
the first array with each array value in the second array.
Pointer notation is used to make the comparison. When a
match is found, variable c is incremented. The total number
of matches, ranging from zero through DRAW, is returned.

Listing 14.9 The winner() function from lotto07.c

int winner(int *m, int *g) ❶
{
 int x,y,c;

 c = 0; ❷

 for(x=0; x<DRAW; x++) ❸

 for(y=0; y<DRAW; y++) ❹
 {

 if(*(m+x) == *(g+y)) ❺

 c++; ❻
 }

 return(c); ❼
}

❶ Both arrays are passed as integer pointers, m for match and g for guess.

❷ Initializes the matching count to 0

❸ Loops through all DRAW numbers in the first array

❹ Loops through each DRAW number in the second array

❺ Compares each element value

❻ Increments the variable y if two values match

❼ Returns the number of matches

The main() function calls the winner() function immediately
after array guess[] is filled by the lotto() function:

lotto(guess);
c = winner(match,guess);

The arrays are passed by name. In the winner() function,
these arrays are recognized as integer pointers. Back in the
main() function, the values for array guess[] are output,
along with a final printf() statement that reports the
number of matches.

The full code is available in the online repository as
lotto07.c. Here is a sample run:

Trying to match: 20 - 27 - 34 - 41 - 59
 Your draw: 1 - 19 - 27 - 33 - 48
You matched 1 numbers

As luck would have it, one of the values matched between
the two simulated lottery drawings the first time I ran the
code (shown above). The winner() function returned one in

variable c, as both arrays share the value 27. I’m pleased
that I didn’t need to run the code several times to show a
match. Yet, it’s this step of repeatedly running the program
that inspired me to code the program’s final version,
covered in the next section.

14.3.3 Testing the odds

In the Powerball game, you can’t just match a single ball to
win. No, you must match a single ball and the Powerball to
win some paltry amount. Ditto for two balls: two balls plus
the Powerball equals some modest payout. You can,
however, match three main numbers to win $7 on a $2 bet.
Garsh! Of course, I didn’t code any of the Powerball
nonsense, so my lotto programs are straightforward, and
the prize money is consistently zero.

The odds of matching one number and the Powerball are
1:92. This value means that if you play the game 92 times,
you’ll probably match one value and the Powerball at least
once—but it’s not a guarantee. I won’t get into the math,
but it could take you several hundred times to see a match
or you could match the first time. It’s this unpredictability
that entices people to gamble—even when the odds are
stupidly high.

Rather than run the lotto program over and over, I decided
to program a loop to output guesses until at least two
numbers match. The next listing shows the main() function
from an updated—the final—version of the lotto series of
programs. The lotto() and winner() functions are

unchanged, but to the main() function I added a constant,
tomatch. It sets the minimum number of balls to match
before a do-while loop stops drawing random lotto balls.
Nothing is output until a match is found, which shaves
several seconds from the processing time.

Listing 14.10 The main() function from lotto08.c

int main()
{

 const int tomatch = 2; ❶
 int x,c,count;

 int match[DRAW],guess[DRAW]; ❷

 srand((unsigned)time(NULL));

 printf("Trying to match:"); ❸
 lotto(match);
 for(x=0; x<DRAW; x++)
 {
 printf(" %d",match[x]+1);
 if(x<DRAW-1)
 printf(" -");
 }
 putchar('\n');

 count = 0; ❹
 do
 {

 lotto(guess); ❺

 c = winner(match,guess); ❻

 count++; ❼

 } while(c<tomatch); ❽

 printf("It took %d times to match %d balls:\n", ❾
 count,
 c
);

 for(x=0; x<DRAW; x++) ❿
 {
 printf(" %d",guess[x]+1);
 if(x<DRAW-1)
 printf(" -");
 }

 putchar('\n');

 return(0);
}

❶ Determines how many balls to match

❷ The two arrays—one to hold the numbers to match and the other the guesses

❸ Outputs the numbers to match

❹ Tracks how many draws are attempted

❺ Grabs the simulated lottery draw

❻ Sees whether any balls match

❼ Increments the count

❽ Keeps looping as long as the number of balls matching is less than the goal

❾ Informs the user of the result, how many draws were required

❿ Outputs the winning draw

The complete code for lotto08.c is available in the online
repository. The program keeps drawing random lottery picks
until the minimum match value, stored in variable
tomatch, is met. Here is a sample run:

Trying to match: 1 - 5 - 21 - 33 - 37
It took 5 times to match 2 balls:
 1 - 30 - 37 - 63 - 66

The computer took five loops to find two matches—1 and
37, according to the output. You can run the program
multiple times to see how many loops it takes to match at
least two balls from five out of a total of 69. Again, I don’t
know the precise odds, but it’s less than 100.

The fun part comes when you modify the code: alter the
tomatch constant to the value 5, and then run the

program. Here is sample output after I made this
modification:

Trying to match: 15 - 33 - 47 - 59 - 60
It took 5907933 times to match 5 balls:
 15 - 33 - 47 - 59 - 60

Above, it took 5,907,933 spins of the do-while loop before
an exact match of the five balls was achieved.

I don’t know whether this code convinces anyone of the
futility of playing a lottery. The issue is never the math; it’s
the human misunderstanding of odds and probability. The
notion that “someone’s gotta win” trumps logic and
common sense every time.

EXERCISE 14.4

The computer mindlessly and effortlessly simulates as many
lottery ball draws as you’re willing to let it perform. The
lotto08.c code shows that even when attempting to
match five out of five balls, the program runs rather quickly.
Yet, more coding can always be done, especially to sate the
curious mind.

Your task for this exercise is modify the lotto08.c code
with the goal of determining the average number of plays
required to match all five balls from 69 possible numbers.
Run the simulation 100 times, each time recording how
many repeated calls to the lotto() function were required to
achieve a match. Store each value, and then report the
average number of plays it took to make a match.

Here is sample output from my solution, which is available
in the online repository as lotto09.c:

Trying to match: 9 - 32 - 33 - 42 - 64
For 100 times, the average count to match 5 balls is 11566729

On average, it took 11,566,729 calls to the lotto() function
to match the original numbers drawn. Remember from
earlier in this chapter that the calculated odds of drawing
the same five numbers from 69 lotto balls is 11,238,513.
Darn close.

Comments in my solution explain my approach, though
please attempt this exercise on your own before you see
what I did. The modifications aren’t that involved, because
most of the coding necessary is already in the lotto08.c
source code file.

Oh! And the solution program takes a while to run. On my
fastest system, I timed it at almost 9 minutes to churn out
the results. Be patient.

15 Tic-tac-toe

At the climax of the 1983 film WarGames, the computer
that’s about to start World War III is directed to play a game
of tic-tac-toe with itself. Recognizing that the game is silly
because experienced players often end play in a draw, the
computer determines that nuclear war is futile. It decides
not to blow up the world. This conclusion should add some
excitement to this chapter, because you can equate any
game of tic-tac-toe—even one simulated on a computer—to
nuclear war.

Game play for tic-tac-toe is simple. It’s easy to code. If you
haven’t yet done so, now is the time to write your own
version of the game. Of course, it’s made more complex
when you consider such tasks as:

Coding a game loop

Programming turns for players

Determining when the game is over

Adding the computer as a player
Giving the computer some intelligence

The biggest hurdle you face when programming a text-mode
game like tic-tac-toe is that I/O in C isn’t interactive. Unless
you use a third-party library, such as Ncurses, you must rely
upon stream I/O for your programs. It can work, but stream

I/O brings potential problems to the table that the code
must deal with, lest everything get hinky for the user.

15.1 A silly kids’ game

No one knows the exact origins of the game tic-tac-toe, so I
thought I’d make up some interesting facts: in ancient
Egypt, a game similar to tic-tac-toe was played on a wooden
peg board with tokens carved from the severed toes of
enemy soldiers. The Romans enjoyed a game of tria ordine,
which involved lining up pebbles on a marble tablet. The
prize was to slap your opponent in the face. And in medieval
Europe, Norwegian children played a game of tossing fish
into baskets, which has nothing to do with tic-tac-toe, but it
smelled terrible.

Yes, I made all that up.

The earliest written reference to tic-tac-toe comes from the
late 1800s using the name noughts and crosses. Even today,
that is the game’s name in the Commonwealth outside
America. The US name tic-tac-toe, originally tick-tack-toe,
came about in the early 20th century. The first tic-tac-toe
computer program was programmed in the early 1950s.

That’s your history lesson for today—some parts true, but
others mostly false.

15.1.1 Playing tic-tac-toe

I’m obligated by the Computer Authors Guild to explain the
game of tic-tac-toe despite your complete familiarity with it.
Even so, remember that—unlike playing on a piece of paper,
in the dirt, or on a fogged mirror—coding the game requires
that you review the game play.

Figure 15.1 shows the standard tic-tac-toe grid: two vertical
lines intersecting two horizontal lines. This grid holds nine
squares, which become the battlefield. These are numbered
in the figure, one through nine, also with handy mnemonics
for each square’s location: top, middle, and bottom with left,
center, and right.

Figure 15.1 The tic-tac-toe game grid, squares numbered and labeled

Players take turns setting a mark into one of the nine grid
squares. After choosing who goes first (an advantage), the
players alternatively mark an X or O in the squares.
Traditionally, the first player marks X, though this choice
isn’t a rule.

The winner is the first player to place three of their marks in
a row. If this goal fails, the game is a tie, or “cat’s game.” All
but the stupidest humans can achieve a tie, so desperate
adults play with small kids to make themselves feel
victorious.

Experienced players know that going first is advantageous.
Further, marking the center square during the first turn, or
ply, is the best strategy. Otherwise, good players attempt to
set a triangle of squares, as illustrated in figure 15.2, which
guarantees a win because their opponent can block only one
of the legs.

Figure 15.2 Arrangements for a winning triangle

Regardless of the strategy, tic-tac-toe has only eight paths
to victory: three rows, three columns, or two diagonals.
Despite the variety of games, only these eight possibilities
define a winner. Because of the nine squares in the grid,
victory is achieved in nine or fewer moves, making the game
easy to learn, quick to play, and fun for a short measure of
time.

15.1.2 Approaching the game mathematically

As a nerd, I’m compelled to discuss the mathematical details
regarding the game of tic-tac-toe. Some of these details
come into play when you code your own game—specifically,
if you dare to code a computer opponent and make it
somewhat intelligent.

The total number of permutations possible for a game of tic-
tac-toe is 19,683. Don’t trust me; someone else did the
math. The number accounts for each of nine grid squares
holding either an X or an O or being blank. Keep in mind
that the game grid is ternary, not binary. I touch upon this
point again at the end of this section.

The 19,683 number doesn’t account for actual game play,
because X and O follow each other and eliminate squares;
the number of permutations is reduced as play moves
forward. In practice, the game has 3,200 possible
permutations. Removing those situations where the game is
already won or tied drops the number further to 2,460.

A final reduction is made by eliminating duplicates due to
rotating or mirroring the game grid. When these repetitions
are removed, the total number of tic-tac-toe game
permutations drops to 120. As this value is a lot easier to
handle than 19,683, many programmers opt to create all
120 permutations in memory and use this database to guide
the computer during game play.

The coding approach to handle 120 permutations is to create
a game tree. This structure contains all possible game plays
from which the program can choose a path to victory. In a
way, this approach works like a giant cheat sheet, with the
computer cribbing its next move based on all the
possibilities, with a bias toward exploring only those paths to
victory or a tie.

My approach to the computer’s game play isn’t as smart as
following a game tree. Instead, I chose to emulate the way

people play the game: move to win or move to block. Later
in this chapter, I expand upon this technique.

Finally, it’s important to remember that the game gird is
ternary: blank, X, or O. Obviously, you use an array to store
values in the grid. I originally used values 0, 1, and 2 for
blank, X, and O, respectively. This approach made the math
more difficult when examining rows, columns, and diagonals.
So, I instead used 0 for blank, but -1 for O and +1 for X.
You can read more about these choices in the next section.

15.2 The basic game

For my implementation of tic-tac-toe, I began by coding the
game grid. In fact, I’ve written many programs that output
tic-tac-toe grids, but never bothered writing any game play,
probably because the game itself isn’t rewarding to play.

At the core of any interactive text mode game is a game
play loop. It accepts input for new moves, updates the grid,
and determines when a winning condition occurs. It’s the
winning condition that breaks the loop, though other options
for bailing out are also provided.

For this first round, I’m coding a human-versus-human
version of the game. It features functions that output the
game grid, prompt for input, and determine a winner. An
updated version that adds the computer as an opponent is
covered later in this chapter.

15.2.1 Creating the game grid

Programming a tic-tac-toe grid is one of the basic duties
beginners perform when learning C programming. After all,
the grid represents a real-life example of a two-dimensional
array, with rows and columns. It can be implemented in
several ways, as shown in figure 15.3.

Figure 15.3 Various options for presenting a text-mode tic-tac-toe game

grid

I experimented with each of the varieties shown in figure
15.3 before I decided it would be more fun to use color text
to show the grid. Color text output is covered in chapter 13.
It involves sending ANSI escape sequences to standard
output, which are interpreted by most terminals as color.

The grid I chose is shown in the lower right in figure 15.3,
the color-coded squares.

Seven color constants are created to achieve the colors I
want, as shown in table 15.1. Two different values are used
for each of the three square possibilities: blank, X, and O.
The alternating values help set a checkerboard pattern,
which helps me avoid adding ugly ASCII line art to build the
game grid.

Table 15.1 Color constants and their values used to create the tic-tac-

toe game grid

Constant Name Code For Output

bfwb[] \x1b[32;47m Blank square, green

foreground/white

background

bf[] \x1b[32m Blank square, green

foreground

xfwb[] \x1b[31;47m X square, red

foreground/white

background

xf[] \x1b[31m X square, red foreground

ofwb[] \x1b[34;47m O square, blue

foreground/white

background

of[] \x1b[34m O square, blue

foreground

reset[] \x1b[0m Color values off

Each sequence sets a foreground or foreground-background
combination. The background colors are used, every other
square, to create the checkerboard pattern. The final

reset[] sequence removes color from the output, which
avoids color spill between lines in the output.

The next listing shows the source code for ttt01.c, the
foundation upon which all code in this chapter is built. The
showgrid() function outputs the game grid with alternating
colors, numbering each position, one through nine. A switch-
case test determines whether the square is occupied with an
O (-1), an X (+1), or a blank (0). In the main() function, the
grid is initialized in the grid[] array and then output. The
purpose of this tiny program is to ensure that the output
looks good.

Listing 15.1 Source code for ttt01.c

#include <stdio.h>

void showgrid(int *g) ❶
{

 const char bfwb[] = "\x1b[32;47m"; ❷
 const char bf[] = "\x1b[32m";
 const char xfwb[] = "\x1b[31;47m";
 const char xf[] = "\x1b[31m";
 const char ofwb[] = "\x1b[34;47m";
 const char of[] = "\x1b[34m";
 const char reset[] = "\x1b[0m";
 int x;

 for(x=0; x<9; x++) ❸
 {

 switch(*(g+x)) ❹
 {

 case -1: ❺

 if(x%2) ❻
 printf("%s O %s",ofwb,reset);

 else ❼
 printf("%s O %s",of,reset);
 break;

 case 1: ❽
 if(x%2)

 printf("%s X %s",xfwb,reset);
 else
 printf("%s X %s",xf,reset);
 break;

 default: ❾
 if(x%2)
 printf("%s %d %s",bfwb,x+1,reset);
 else
 printf("%s %d %s",bf,x+1,reset);
 }

 if((x+1)%3==0) ❿
 putchar('\n');
 }
 putchar('\n');
}

int main()
{

 int grid[] = { ⓫
 0, 0, 0,
 0, 0, 0,
 0, 0, 0
 };

 puts("Tic-Tac-Toe");

 showgrid(grid); ⓬

 return(0);
}

❶ The grid[] array is passed as an integer pointer.

❷ Constants to define colors for grid output

❸ Loops through the entire grid, nine squares

❹ Tests the value of each square: -1 for O, +1 for X, and 0 for blank

❺ O occupies the square.

❻ Outputs the square with a background (and the O)

❼ Outputs the square without a background

❽ Repeats the same output for X

❾ Numbers the unoccupied squares, adding 1 for human eyeballs

❿ Every third square, adds a newline

⓫ The game grid is initialized here.

⓬ Outputs the grid

The showgrid() function processes squares in the game grid.
For each possible value—-1, +1, or 0—two options are
available for output. The first is triggered for odd-numbered
squares, where a background color is applied. For even
squares, no background color is used. The effect is to output
the current state of play in a consistent pattern, with no
extra text characters required to build the grid.

Here is a sample run:

Tic-Tac-Toe
 1 2 3
 4 5 6
 7 8 9

The numbers in the grid help reference squares as the game
progresses. Eventually, they’re replaced by X and O
characters, which not only informs the user that the same
square can’t be played twice but also shows the game’s
progress.

You can stop here and just admire your work. But no. The
next step is to add game play.

15.2.2 Adding game play

I’m unsure whether every game works this way, but all the
text-mode games I’ve written contain a primary game play
loop. The loop checks for input, updates the game field, and
determines when the game is over.

Generally, the game play loop is endless. The terminating
condition is winning the game, losing the game, or the

player giving up.

To update the existing ttt01.c code, the game play loop
must display the grid, prompt for input, and then update the
grid[] array. This loop is shown in the next listing, added
just below the puts() statement that outputs the game title.
Two integer variables must be declared: ply and p.

Listing 15.2 The game play loop in the main() function

ply = 0; ❶

while(1) ❷
{

 showgrid(grid); ❸

 p = prompt(ply); ❹

 if(p==0) ❺
 break;

 grid[p-1] = ply%2 ? -1 : 1; ❻

 ply++; ❼
}

❶ Turns, or plies, start at zero.

❷ The loop is endless, relying on a win or exit command to break.

❸ Outputs the grid

❹ Accepts input, returning the square to place a token

❺ If the user inputs zero, the game quits.

❻ Sets the token on the grid, subtracts one from p to obtain the array offset, and uses the

current ply to determine whether O (-1) or X (+1) has played

❼ Increments the ply to the next turn

The prompt() function obtains user input, either the square
in which to place a mark or zero to exit the game. The zero
return value is tested to break the loop, ending the game.
Otherwise, the grid[] array is updated.

The value of variable ply (the current turn) determines
whether X or O is playing. It’s assumed that X goes first.
When ply%2 is 0, then O or -1 is generated in the grid;
otherwise, X or +1 is set.

A text mode game must rely upon stream I/O to do its
thing. Such a trick is possible if input is limited and makes
sense to the user. For my tic-tac-toe game, numeric input is
all that’s allowed. I rely upon the scanf() function, which I
detest, but it does the job.

The following listing shows the prompt() function, which is
called from the main() function in the endless while loop,
shown earlier in listing 15.2. The function’s argument is the
current ply, the game’s next turn. This value is tested to
determine whether X or O is playing. Input ranges from 1
through 9 (human numbers, not the actual array offsets),
with 0 indicating the player wants to quit. Out-of-range
values are interpreted as 0.

Listing 15.3 The prompt() function

int prompt(int p)
{
 int square;

 printf("%c's turn: Pick a square, 0 to quit: ",

 p%2 ? 'O' : 'X' ❶
);

 scanf("%d",&square); ❷

 if(square<0 || square>9) ❸
 return(0);
 return(square);
}

❶ Uses the ply value in variable p to determine which is the current play, X or O

❷ Obtains numeric input

❸ For out of range values, returns 0 (exit)

The main() function uses the return value from prompt() to
set X or O into the grid. The complete source code is
available in the online repository as ttt02.c. Here’s a
sample run:

Tic-Tac-Toe
 1 2 3
 4 5 6
 7 8 9

X's turn: Pick a square, 0 to quit: 5
 1 2 3
 4 X 6
 7 8 9

O's turn: Pick a square, 0 to quit: 1
 O 2 3
 4 X 6
 7 8 9

X's turn: Pick a square, 0 to quit: 2
 O X 3
 4 X 6
 7 8 9

O's turn: Pick a square, 0 to quit: 5
 O X 3
 4 O 6
 7 8 9

X's turn: Pick a square, 0 to quit: 0

The code successfully places an X or O on the grid, taking
turns. What’s missing from the code is the capability to
determine when a square is already occupied. As you can
see from this sample run, O was able to capture the center
square after it was already taken by X. The code also lacks a

method to determine when the game is over; game play
continues until the user inputs zero to quit.

15.2.3 Limiting the input to free squares

The ttt02.c code has plenty of room for improvement. The
priority for me at this point is to restrict play to only blank
squares in the grid. For example, if the center square is
occupied by an X, player O is unable to choose the square.
This update requires a few modifications. To prevent squares
from being retaken, the prompt() function must be updated
as well as the game play loop in the main() function.

The updated prompt() function is shown next. The grid[]
array must be passed as an argument so that the function
can determine whether a square is occupied. Further, -1 is
added as a return value to flag that a square is occupied or
an input value is out of range. Otherwise, the return values
are 1 through 9 to select an open square, or 0 to quit.

Listing 15.4 The updated prompt() function

int prompt(int p, int *g) ❶
{
 int square;

 printf("%c's turn: Pick a square, 0 to quit: ",
 p%2 ? 'O' : 'X'
);
 scanf("%d",&square);

 if(square<0 || square>9)
 {

 puts("Value out of range"); ❷

 return(-1); ❸
 }

 if(square==0) ❹
 return(square);

 if(*(g+square-1) != 0) ❺
 {

 printf("Square %d is occupied, try again\n", ❻
 square
);

 return(-1); ❼
 }

 return(square); ❽
}

❶ Array grid[] is used as pointer variable g here.

❷ Informs the user that the value is out of range

❸ Returns -1 for invalid input

❹ Tests for the 0 to quit here; otherwise, the value is returned and used improperly on array

grid[]

❺ If the value chosen is occupied, or not zero; note that 1 is subtracted because the input is 1

through 9, though the array elements are numbered 0 through 8.

❻ Informs the user that the square is occupied and to try again

❼ Returns -1 for invalid input

❽ Returns the square chosen, which is unoccupied

To make the updated prompt() function work, the statement
that calls the function must be modified. Bad input must be
dealt with right away. Therefore, I chose to set the function
into a while loop, where the return value from prompt() is
the condition:

while((p = prompt(ply,grid)) == -1)
 ;

The while loop repeatedly calls the prompt() function as long
as the value returned is -1. Only valid input—0 or an open

square number—breaks the loop. The remainder of the
main() function is unchanged.

The updated source code is found in the online repository as
ttt03.c. Here is a sample run:

Tic-Tac-Toe
 1 2 3
 4 5 6
 7 8 9

X's turn: Pick a square, 0 to quit: 5
 1 2 3
 4 X 6
 7 8 9

O's turn: Pick a square, 0 to quit: 5
Square 5 is occupied, try again
O's turn: Pick a square, 0 to quit: 1
 O 2 3
 4 X 6
 7 8 9

X's turn: Pick a square, 0 to quit: 9
 O 2 3
 4 X 6
 7 8 X

O's turn: Pick a square, 0 to quit: 0

At the second move, the program successfully prevents O
from choosing X’s square. It outputs a message displaying
the issue and urges the player to try again.

15.2.4 Determining the winner

The game works so far, with players able to go back-and-
forth choosing squares and setting their marks. But the code
doesn’t know when you’ve won. Further, because the game
play loop is infinite, eventually you run out of open squares

and the game doesn’t stop, nor does the program know
when to call a tie, or cat’s game. Fixing is in order.

To determine a winner, I wrote the winner() function. It
examines the eight slices through the game grid where a win
is possible, as illustrated in figure 15.4. For a slice to identify
as a winner, all of its squares must contain the same value—
+1 for X or -1 for O. The total for a given slice must be
either +3 or -3 to win the game.

Figure 15.4 The eight slices defining a win in tic-tac-toe

The winner() function accepts the game grid as an
argument. Each square is examined as columns, rows, and
diagonals, as shown in figure 15.4. The notation to do the

math was clunky in the function’s original version. For
example, to test the left column, I used the following
statement:

slice[0] = *(g+0) + *(g+3) + *(g+6);

Element 0 of the slice[] array holds the total for the first
column—squares 0, 3, and 6. However, I find the *(g+n)
notation to be clumsy and confusing: each square is
represented by integer pointer g, plus an offset into the
array. Because I constantly had to refer to a map (see figure
15.1) when writing the code, I opted to create some defined
constants to reference the various squares more easily:

#define TL *(g+0)
#define TC *(g+1)
#define TR *(g+2)
#define ML *(g+3)
#define MC *(g+4)
#define MR *(g+5)
#define BL *(g+6)
#define BC *(g+7)
#define BR *(g+8)

The mnemonics of these defined constants, also appearing in
figure 15.1, make it easier to define the slices. They also
play a role later in the program’s development, when the
computer is attempting to block or make a win.

The next listing shows the winner() function. Its argument is
the game grid. The slice[] array contains the totals of the
eight possible winning combinations, totaling the values in
each of the three squares for each slice. If a slice contains
all the same tokens, its value is -3 for an O win or +3 for an

X win. A for loop tests these possibilities. When a win
occurs, the function returns 1, or 0 otherwise.

Listing 15.5 The winner() function

int winner(int *g)
{

 int slice[8]; ❶
 int x;

 slice[0] = TL + ML + BL; ❷
 slice[1] = TC + MC + BC;
 slice[2] = TR + MR + BR;
 slice[3] = TL + TC + TR;
 slice[4] = ML + MC + MR;
 slice[5] = BL + BC + BR;
 slice[6] = TL + MC + BR;
 slice[7] = TR + MC + BL;

 for(x=0; x<8; x++) ❸
 {

 if(slice[x]==-3) ❹
 {

 showgrid(g); ❺

 puts(">>> O wins!"); ❻

 return(1); ❼
 }

 if(slice[x]==3) ❽
 {
 showgrid(g);
 puts(">>> X wins!");
 return(1);
 }
 }

 return(0); ❾
}

❶ Eight possible ways to win; the slice[] array holds the totals.

❷ Tallies the columns, rows, and diagonals for each slice

❸ Reviews the totals

❹ Checks for an O victory

❺ Outputs the winning game grid

❻ Informs the user

❼ Exits with 1, meaning a player has 1

❽ Repeats the same sequence for an X victory

❾ Returns 0 if no one has 1

The winner() function must be integrated into the main()
function within the game play loop to report a victory. It also
provides another way to terminate the loop beyond the user
typing zero to quit the game.

After the winner() function is added, another change to the
game play loop is to set a termination condition for the while
loop. After all, only nine plies (turns) are possible for a game
of tic-tac-toe, assuming it’s a draw.

After the game play loop, I added another if test to
determine whether the game was a draw. These items are
called out in the next code listing, which shows the updated
code from the main() function.

Listing 15.6 Updating the game play loop in the main() function

 ply = 0;

 while(ply<9) ❶
 {
 showgrid(grid);
 while((p = prompt(ply,grid)) == -1)
 ;
 if(p==0)
 break;
 grid[p-1] = ply%2 ? -1 : 1;

 if(winner(grid)) ❷

 break; ❸
 ply++;
 }

 if(ply==9) ❹
 {

 showgrid(grid); ❺

 puts("Cat's game!"); ❻
 }

❶ Limits the loop to nine turns

❷ Calls the winner() function, which returns 1 when a win is detected

❸ Halts the loop

❹ Tests to see whether the loop terminated in a no-win

❺ Outputs the grid to show the draw

❻ Informs the user

The complete update is found in the online repository as
ttt04.c. The game now allows two players to compete. It
accurately reports a winner and determines when the game
ends in a draw. Here is sample output:

 Tic-Tac-Toe
 1 2 3
 4 5 6
 7 8 9

X's turn: Pick a square, 0 to quit: 5
 1 2 3
 4 X 6
 7 8 9

O's turn: Pick a square, 0 to quit: 2
 1 O 3
 4 X 6
 7 8 9

X's turn: Pick a square, 0 to quit: 1
 X O 3
 4 X 6
 7 8 9

O's turn: Pick a square, 0 to quit: 9
 X O 3
 4 X 6
 7 8 O

X's turn: Pick a square, 0 to quit: 4
 X O 3
 X X 6
 7 8 O

O's turn: Pick a square, 0 to quit: 7
 X O 3
 X X 6
 O 8 O

X's turn: Pick a square, 0 to quit: 6
 X O 3
 X X X
 O 8 O

>>> X wins!

Think of all the paper you can save when you play tic-tac-toe
on the computer! Of course, most users don’t want to play
against a human challenger, probably because they have no
friends. The true foe for a game of tic-tac-toe is . . . a
computer.

15.3 The computer plays

In the movie WarGames, the genius programmer is asked
whether his game of tic-tac-toe has a configuration where
the computer can play itself. It does. The key is to enter
zero for the number of players. The computer plays itself,
realizes that the game is futile, and we go to DEFCON 5.

Obviously, anyone who codes a computer version of tic-tac-
toe is compelled to provide the same “number of players
equals zero” option available to our intrepid cinematic
heroes. Who doesn’t want to see the computer battle wits
with itself? This feature not only makes the game more
interesting but also tests the programmer’s logic: when the
computer plays against itself, does the game always end in a
draw?

15.3.1 Choosing the number of players

The decision tree required to set the number of players for
the tic-tac-toe program certainly is ugly. I tried making it
beautiful, but with three options to sift through, the coding
choices are limited.

The prompt is easy enough to code:

Number of players (0, 1, 2):

Set in the main() function, immediately after the program’s
title is output, the prompt asks for the number of players: 0,
1, or 2. If an invalid number is input, the program quits.

In the game play loop, however, decisions are made based
on the number of players:

When the number of players is 0, the computer plays
every turn.

When the number of players is 1, the computer
alternates every other turn.
When the number of players is 2, humans take turns, as
in the ttt04.c version of the game.

The following listing shows the updated main() function. The
number of players is input, and then an if-else contraption
sifts through the players, ensuring that human and
computer take their turns. If the player count is 1, play
alternates between computer and player, with the player
going first.

Listing 15.7 The updated main() function

int main()
{
 int grid[] = {
 0, 0, 0,
 0, 0, 0,
 0, 0, 0
 };

 int ply,p,players; ❶

 srand((unsigned)time(NULL)); ❷

 puts("Tic-Tac-Toe");

 printf("Number of players (0, 1, 2): "); ❸
 scanf("%d",&players);

 if(players<0 || players>2) ❹
 return(1);

 ply = 0;
 while(ply<9)
 {
 showgrid(grid);

 if(players==0) ❺
 {

 p = computer(grid); ❻
 }

 else if(players==1) ❼
 {

 if(ply%2) ❽
 {
 p = computer(grid);
 }

 else ❾
 {
 while((p = prompt(ply,grid)) == -1)
 ;
 }
 }

 else ❿
 {
 while((p = prompt(ply,grid)) == -1)
 ;
 }
 if(p==0)
 break;
 grid[p-1] = ply%2 ? -1 : 1;
 if(winner(grid))

 break;
 ply++;
 }
 if(ply==9)
 {
 showgrid(grid);
 puts("Cat's game!");
 }

 return(0);
}

❶ Variable players tracks the number of players: 0, 1, or 2.

❷ Seeds the randomizer for computer play

❸ Prompts for input

❹ Exits the program upon invalid input

❺ Zero players are specified.

❻ The computer always plays itself, every turn.

❼ One player is specified.

❽ On odd turns, the computer plays.

❾ The prompt() function handles the player’s turn.

❿ For two players, the prompt() function handles both turns.

The computer() function handles the computer’s play, even
when both players are the computer. The prompt() function
deals with human player interaction.

The code isn’t done. The computer() function must be
written, which is covered in the next section. To complete
the update from this section, however, you must add
directives to include the stdlib.h and time.h header
files, which support the srand() statement in the main()
function, as well as the rand() statement in the computer()
function.

15.3.2 Coding a dumb opponent

At this point in the game’s development, the computer()
function need not harbor insidious intelligence nor an
intimate knowledge of how to win the game. So, I coded a
purely random selection routine, as shown in the next
listing. The function tests for an available random square in
the grid and sets its token at that location. The random
value is returned—in a range compatible with the human
player’s choice—where the token is set in the main()
function.

Listing 15.8 The computer() function

int computer(int *g)
{
 int r;

 do
 {

 r = rand() % 9; ❶

 } while(*(g+r) != 0); ❷

 r++; ❸

 printf("The computer moves to square %d\n",r); ❹
 return(r);
}

❶ Generates a random value, 0 through 8

❷ Confirms that the square is empty, or keeps looping otherwise

❸ Increments the square value for humans as well as for consistency with the prompt()

function

❹ Informs the user

The complete code, including the updated main() function
from the preceding section as well as the computer()
function, is available in the online repository as ttt05.c.

At this point in the program’s evolution, the computer always
goes second, playing O for its moves. Here is some sample
output:

Tic-Tac-Toe
Number of players (0, 1, 2): 1
 1 2 3
 4 5 6
 7 8 9

X's turn: Pick a square, 0 to quit: 5
 1 2 3
 4 X 6
 7 8 9

The computer moves to square 6
 1 2 3
 4 X O
 7 8 9

X's turn: Pick a square, 0 to quit: 3
 1 2 X
 4 X O
 7 8 9

The computer moves to square 2
 1 O X
 4 X O
 7 8 9

X's turn: Pick a square, 0 to quit: 7
 1 O X
 4 X O
 X 8 9

>>> X wins!

It’s possible to attribute some intelligence to the admittedly
dumb computer() function, but nothing of the sort exists. I’d
provide a sample run that makes you believe the computer
is smart, but instead run the code on your own, setting 0 as
the number of players, and review the output. Occasionally,
it seems like the computer is being smart. Trust me—it’s not.

EXERCISE 15.1

The computer complains that it’s unfair that it always goes
second in a one-on-one battle. To remedy this situation,
update the main() function from ttt05.c so that a random
choice is made, determining which player goes first:
computer or human.

Here is the first part of the output from my solution:

Tic-Tac-Toe
Number of players (0, 1, 2): 1
A flip of the bitcoin says that the computer goes first

 1 2 3
 4 5 6
 7 8 9

The computer moves to square 3
 1 2 X
 4 5 6
 7 8 9

The random choice of who goes first is required only when
one player is selected, a human-versus-computer battle. My
solution is found in the online repository as ttt06.c.

15.3.3 Adding some intelligence

Most of the nerds who program a computer to play tic-tac-
toe use a game tree. They plot every move and its
consequences, all 120 or so permutations of the game. I
looked into this approach, but it seemed like a lot of work.
Being lazy, I instead rolled my own approach for the
computer to play, and hopefully win, tic-tac-toe.

My code has three pieces of intelligence for the computer
player. First, if it’s the first turn (ply zero) and the computer
moves first, it should snag the center square. This update is
made to the computer() function:

if(p==0)
{
 puts("The computer snags the center");
 return(5);
}

Variable p is the current ply value from the game play loop
in the main() function. When its value is 0, the computer is
taking the first turn and all squares are open. A message is
output, and the function returns 5, the center square. The
value should be 4, because this is the offset in the grid[]
array, but the computer() function must be compatible with
the user’s prompt() function and return values in the range 1
through 9. (Remember that prompt() returns 0 to quit the
game.)

This if test can be improved to check the center square
during the second ply: if the computer goes second but its
human opponent is too stupid to grab the center square, it
should take it. Here is the update to the if decision:

if(p==0 || (p==1 && MC==0))
{
 puts("The computer snags the center");
 return(5);
}

The if condition reads, “If it’s the first turn—or if it’s the
second turn and the center square (MC) remains empty—

grab the center square.” The center square is a position of
strength in this game. In fact, taking the center is one of the
first tricks a kid learns when first playing tic-tac-toe.

The second iota of intelligence is to play a corner square
when the center square is taken. This move provides the
best defense when moving second. The if decision here is an
easy one:

if(p==1 && TL==0)
{
 puts("The computer moves to square 1");
 return(1);
}

The if condition reads, “If it’s the second ply (turn) and the
top-left (TL) square is empty, take it.” The value 1 is
returned. At this point in the computer() function, the center
square has already been taken—guaranteed. The preceding
if condition rules out MC as anything other than 0. Therefore,
on the second ply, p==1, the top-left (TL) square is most
likely empty. The if condition tests for it anyway and
defensively moves to the top-left square.

The third piece of intelligence consists of a game grid scan
for moves to block or moves to win. Before the computer
resorts to a random move, it scans all eight possible winning
slices on the game grid. If any of these slices contains two of
the same tokens plus an empty square, the empty square is
filled so that the computer wins or blocks a win.

I originally wrote two functions, towin() and toblock(), to
carry out the game grid scan. Eventually, it dawned on me

that both functions work the same, just look for different
values. The towin() function wants the computer’s tokens to
add up to 2 or -2; the toblock() function wants the
opponent’s tokens to add up to 2 or -2. I wrote the three()
function to handle both conditions:

int three(int *g, int p)

The function’s arguments are g, the game grid, and p, the
token to look for: -1 for O and +1 for X.

The three() function’s statements are repetitive, with each
block representing one of the eight slices that establish a
win. Defined constants shown earlier in this chapter
represent the specific squares. Here is a typical block:

if(TL + ML + BL == p*2)
{
 if(TL==0) return 0;
 if(ML==0) return 3;
 if(BL==0) return 6;
}

Defined constants TL, ML, and BL represent the first column
in the grid. If their total is equal to two times variable p, the
column contains two matching tokens and a blank. This
result holds true whether p is -1 for O or +1 for X.

After a slice is identified as a potential win or block, the
function returns a value representing the blank square: If it’s
the top-left square, TL, 0 is returned. If the middle-left
square is blank, ML==0, its offset is returned. This logic

allows the computer to either win or block, depending on the
value of variable p.

The three() function continues with similar tests for each of
the eight slices. The value returned is the square to choose,
reported to the computer() function shown in the next
listing. The code first checks for a win, and then for a block.
If neither test is successful (-1 is returned), the computer
randomly chooses an available square, as before.

Listing 15.9 The updated computer() function

int computer(int p,int *g) ❶
{
 int r;

 if(p==0 || (p==1 && MC==0)) ❷
 {
 puts("The computer snags the center");
 return(5);
 }

 if(p==1 && TL==0) ❸
 {
 puts("The computer moves to square 1");
 return(1);
 }

 if(p%2) ❹

 r = three(g,-1); ❺
 else

 r = three(g,1); ❻

 if(r==-1) ❼
 {

 if(p%2) ❽

 r = three(g,1); ❾
 else

 r = three(g,-1); ❿
 }

 if(r==-1) ⓫

 {
 do
 {
 r = rand() % 9;
 } while(*(g+r) != 0);
 }

 r++; ⓬

 printf("The computer moves to square %d\n",r); ⓭

 return(r);
}

❶ Variable p is the current ply and g is the game grid.

❷ Grabs the center square if it’s empty

❸ On the second turn, grabs the corner square if it’s empty

❹ Detects a win using the ply value: 0 means it’s O’s turn, 1 for X.

❺ Checks for a win for O (-1)

❻ Checks for a win for X (+1)

❼ If a win isn’t detected, three() returns -1; checks for a block (you want to win before you

block).

❽ Determines whether X or O is moving next

❾ Blocks for X

❿ Blocks for O

⓫ If r is equal to -1e, the computer hasn’t won or blocked; time for a random square pick.

⓬ Increments r to represent the proper offset, 1 through 9

⓭ Informs the user

The smarts in the computer() function work from the top
down: first comes the center square check, and then the
computer tries to grab the corner square. After that, the
three() function is checked first to win and then to block.
When these efforts fail, shown by the value -1 returned, the
computer uses the randomizer.

The main() function must also be updated, reflecting the
new argument for the computer() function. Two updates are

required to modify this statement:

p = computer(grid);

into this statement:

p = computer(ply,grid);

The ply argument is used in the computer() function for its
call to the three() function. It’s this variable’s value that
determines whether the function is blocking or winning
because, in the program, X always moves first.

All changes, including the full three() function, are found in
the online repository in the source code file ttt07.c. The
computer player isn’t perfectly intelligent, but it’s smart
enough to prove a challenge—for at least a few games and
definitely to defeat a small child or stupid adult.

The true test, of course, is when the computer plays itself.
In theory, it should tie each time. But the program still uses
random-number generation to plot its initial game.
Specifically, in the computer-to-computer output shown
here, see how the computer grabs the center square as well
as the upper-left square? These are advantageous and
defensive moves, respectively:

Tic-Tac-Toe
Number of players (0, 1, 2): 0
 1 2 3
 4 5 6
 7 8 9

The computer snags the center
 1 2 3

 4 X 6
 7 8 9

The computer moves to square 1
 O 2 3
 4 X 6
 7 8 9

The computer moves to square 3
 O 2 X
 4 X 6
 7 8 9

The computer moves to square 7
 O 2 X
 4 X 6
 O 8 9

The computer moves to square 4
 O 2 X
 X X 6
 O 8 9

The computer moves to square 6
 O 2 X
 X X O
 O 8 9

The computer moves to square 9
 O 2 X
 X X O
 O 8 X

The computer moves to square 8
 O 2 X
 X X O
 O O X

The computer moves to square 2
 O X X
 X X O
 O O X

Cat's game!

From the output, you can see that the computer did well
against itself. It’s not exactly smart, but it’s challenging
enough—and the game ended in a tie.

Further updates to the code at this point would lead to a
game tree strategy, where you map out the best second,
third, and fourth moves in a complex tree decision structure-
thing. At some point, however, playing the game employs
the tactics of blocking and winning.

One devious improvement I considered was to have the
computer cheat. It could, for example, replace an opponent’s
token with its own or prevent an opponent from selecting a
winning square. Though such a modification would be fun, it
involves rewriting a lot of the existing code. I leave this task
up to you, though not as an official exercise.

index

Symbols

& (AND) bitwise logical operator 77

#include directives 133

| (OR) bitwise logical operator 77

A

ABBR option 184

add_noun() function 106

add_word() function 101 – 102, 105, 107

alfa int variable 182

ALPHA constant 277

alpha constant 160

AND operator 200

apt command 11

ar (archive) utility 134 – 135

ASCII (American Standard Code for Information Interchange)

control codes 71 – 73

conversion tricks 76 – 78

generating noncharacter output 74 – 75

overview 69 – 71, 145 – 147

-a switch 183, 185 – 187, 189

atexit() function 176

B

BALLS defined constant 326

balls variable 323

bash shell 11, 18 – 20, 130

Baudot code 141

BCD (Binary Coded Decimal) 141

BG constant 308

binString() function 74 – 75

bits, defined 164

BL defined constant 350

block buffering 53

BOLD attribute 309

bravo int variable 182

buf buffer 123, 208

buffer character array 54

BUFSIZ defined constant 208

build_vocabulary() function 103 – 105, 107

byte_sizes.c code 166

BYTES_PER_LINE constant 82

bytes variable 82

byte unsigned long variable 166

C

Caesarean ciphers 50 – 67

devising variations 60 – 63

filtering words 65 – 67

hex output filters 63 – 64

I/O filters 51 – 57

stream I/O 51 – 54

working filter at command prompt 56 – 57

writing simple filters 54 – 56

NATO filter 64 – 65

rot13 program 58 – 60

calendars 273 – 311

calculating first day of month 280 – 282

cal program 274 – 275

color 303 – 311

coloring holidays 309 – 311

generating colorful calendar 306 – 309

terminal colors 303 – 306

creating constants and enumerating dates 276 – 277

finding day of week 277 – 280

full year

displaying 295 – 298

putting into grid 299 – 303

generating week 286 – 292

leap years 282 – 283

showing month 292 – 295

time zones 283 – 285

cat command 86, 161

cd command 10

C development cycle 2 – 4

building 3 – 4

compiling 3 – 4

editing source code 2 – 3

linking 3 – 4

center() function 295, 299 – 300

changecwd.c source code 209

character encoding 141 – 163

text representation 142 – 148

ASCII 145 – 147

early text formats 142 – 145

Unicode 147 – 148

wide character programming 148 – 163

character types 150 – 152

generating output 152 – 156

locale settings 149 – 150

receiving input 156 – 160

working with wide characters in files 160 – 163

char array declaration 111

char data type 69 – 70, 74, 110, 137, 150 – 151, 157, 165 – 166

charlie int variable 182

char pointer 33, 44, 101, 257

char-sized chunks 169

char variables 74

ch character input 55

CHCP command 146

chdir() function 208 – 210, 215, 239

check_caps() function 108

checksum01.c program 88

checksum int variable 87

ch int variable 48, 74

chmod command 20, 199

chsh command 18

clang compiler 5, 12 – 13

closedir() function 203 – 204

code, writing 5 – 7

Code::Blocks IDE 5 – 7

code pages 146

code points 148

code space 148

color 303 – 311

coloring holidays 309 – 311

generating colorful calendar 306 – 309

terminal colors 303 – 306

color_holiday() function 310

color_output() function 308

COLUMNS defined constant 299

command-line compiling 9 – 13

accessing terminal window 9

basic shell commands 10 – 11

compiling and running 12 – 13

GUI editor 12

text screen editors 11 – 12

using command-line compiler options 15 – 16

commify() function 317

computer() function 345 – 349, 351

constants, creating 276 – 277

const char arrays 143

const char pointers 137, 276

const char types 215

const classifier 276

core dump 171

COUNTRY command 146

count variable 128, 227, 235

cp command 10

C Programming Language, The (Kernighan and Dennis) 130

Csh shell 19

-c switch 134 – 135

ctime() function 23 – 24, 26, 196, 283

curl libcurl library 15

cwd[] char array 208

cypher program 13

D

Dan Gookin’s Guide to Ncurses Programming 53

data[] array 175

data[] buffer 175

date tm structure 278

day member 257

dayoftheweek() function 279, 281

day variable 286, 292, 294, 301 – 302

DELTA constant 277

depth indent level 221

depth variable 221

dest buffer 115

diff command 86

diff program 86

d_ino member 205

dir() function 213, 215, 217 – 218, 220 – 221, 225

directories

monitoring depth 220 – 222

names 218 – 220

reading 203 – 207

directory char variable 215

directory tree utility 191 – 222

directory trees 217 – 222

directory name 218 – 220

monitoring directory depth 220 – 222

files and directories 194 – 207

file types and permissions 197 – 203

gathering file information 194 – 197

reading directories 203 – 207

filesystem 192 – 194

subdirectories 207 – 217

exploring 210 – 212

recursion 212 – 217

tools for 208 – 210

dirent structure 204 – 206

DIR handle 203 – 204

dirtree03.c online repository 222

dirtree program 220 – 221

dotm[] array 301 – 303

double data type 110

double-quad words 165

doublewords 165

do-while loop 323, 330

dow variable 297 – 298

doy variable 271

DRAW defined constant 326

draw variable 323

d_reclen member 205

dump 170 – 171

dumpfile04.c source code 185

dumpfile code 175, 180, 183

dumpfile utility 175 – 179

command-line options 179 – 190

activating octal output 187 – 190

getopt() function 180 – 182

setting abbreviated output 185 – 187

updating program code 182 – 185

fixing uneven output 178 – 179

reading file data 175 – 177

E

easter() function 267 – 269, 271

easter01.c online repository 268

EBCDIC (Extended Binary Coded Decimal Interchange Code) 145

echo command 57, 247

else condition 198

else portion 294

else statement 59

Emacs text mode editor 11

encoding and decoding 68 – 92

hex encoder/decoder 79 – 89

error-checking 87 – 89

writing 79 – 86

plain text 69 – 78

ASCII 69 – 71

control codes 71 – 73

conversion tricks 76 – 78

generating noncharacter output 74 – 75

URL encoder 89 – 92

creating 91 – 92

encoding rules 89

writing 90 – 91

entry pointers 35 – 36

entry variable 33 – 35

enum keyword 276 – 277

EOF (end-of-file) marker 51, 54 – 55

EOF flag 43

EPSILON constant 277

errno variable 204, 208 – 209, 211

exit() function 84, 176, 247

exit command 10

EXIT_FAILURE status 249

exit status 246

EXIT_SUCCESS status 249

extended_ascii.c source code 147

Extended Binary Coded Decimal Interchange Code (EBCDIC) 145

extract() function 219 – 220

F

FALSE constant 277

fclose() function 203

february() function 282 – 283, 288, 294 – 295, 299

fflush() function 54

FG constant 308

fgetc() function 48, 54, 162, 176

fgets() function 41, 48, 84, 111, 114, 158, 161 – 162, 176

fgetwc() function 162

fgetws() function 157 – 159, 161 – 163

file finder utilities 175, 223 – 244

Find Dupe utility 234 – 244

building file list 235 – 239

locating duplicates 239 – 244

Find File utility

coding 225 – 228

find and grep utilities 224 – 225

globbing 228 – 232

using wildcards to find files 232 – 234

FILE handle 203

fileinfo series of programs 201, 203

filename char pointer 176, 195

find() function 225, 227, 232, 236 – 240

find command 224

Find Dupe utility 234 – 244

building file list 235 – 239

locating duplicates 239 – 244

finddupe utility 234

findfile01.c source code 227 – 228

Find File utility 223 – 244

coding 225 – 228

find and grep utilities 224 – 225

globbing 228 – 232

using wildcards to find files 232 – 234

find utility 224 – 225

finfo structure 235, 239, 243

first() function 301

first variable 293 – 294

float data type 137

floor() function 269

fopen() function 160, 176, 179, 203

fork() function 249

fortune program 31

found int variable 241

fputc() function 54 – 55, 160

fputs() function 154

fputwc() function 160

fputws() function 154

fread() function 176, 205

free() statements 37

G

GAMMA constant 277

gcc compiler 5, 12

getchar() function 52, 54, 156, 170

getcwd() function 208 – 209

getcwd.c demo program 208

getopt() function 180 – 183

getopt_long() function 180

getwchar() function 156 – 157

glob() function 228, 230 – 232, 234

globbing 228 – 232

glob (global) 228

GREET.COM program 25 – 26

greetings program 21 – 23

adding general time info to greeting code 25 – 26

adding moon phases to greeting code 30 – 31

adding name as argument 22 – 23

adding phrases to greeting code 37

adding specific time info to greeting code 26 – 27

coding 21 – 22

grep command 224

grep utility 224 – 225

grid[] array 335, 337, 339, 348

guess[] array 328

GUI editor 12

H

hash char variable 151

hello[] array 153

Hello World program 21

hello_wworld01.c code 153

help() function 183 – 185

hexdecode program 84, 86, 88

hexd (hexdefilter01.c) program 81

hexdump utility 161, 164 – 190

dumpfile utility 175 – 179

command-line options 179 – 190

fixing uneven output 178 – 179

reading file data 175 – 177

storage 164 – 175

dumping data 170 – 175

outputting byte values 169 – 170

storage units and size 165 – 168

hexe (hexenfilter01.c) program 81

hexencode program 84, 86

hex encoder/decoder 79 – 89

error-checking 87 – 89

writing 79 – 86

hex integer variable 85

hex output filters 63 – 64

h holiday structure 310

High Performance File System (HPFS) 192

holiday detector utility 245 – 272

calculating Easter 266 – 269

holidays in UK 255 – 256

holidays in US 254 – 255

irregular holidays 261 – 266

obtaining any date 251 – 254

obtaining today's date 250 – 251

regular date holidays 256 – 261

return values 246 – 250

exit status vs. termination status 246

interpreting 247 – 249

preset 249 – 250

setting 246 – 247

testing 270 – 272

holiday integer 261

holiday structure 257 – 259, 268, 310

hostage filter 57

hostage program 57

HPFS (High Performance File System) 192

-h switch 183

I

I/O (input/output) filters 51 – 57

stream I/O 51 – 54

working filter at command prompt 56 – 57

writing simple filters 54 – 56

IDEs (integrated development environments) 4 – 9

choosing 4 – 5

Code 5 – 7

linking libraries 14 – 15

XCode IDE 7 – 9

if condition 184, 188, 349

if decision 178, 257, 288, 294, 308, 348 – 349

if-else conditions 66

if else-if else structure 201, 290

if-else structures 143, 188, 203

if tests 160, 172, 183, 186, 200, 266, 282, 289, 343, 348

index variable 176

inode 194

input buffer 158

input wide character buffer 158

ins pointer 126

int8_t integer type 168

int16_t integer type 168

int32_t integer type 168

int64_t integer type 168

int data type 110, 137, 168, 170

International Telegraph Alphabet No. 2 (ITA2) 144

int variable declarations 85

inword variable 128

isalnum() function 90

isalpha() function 41, 49, 59, 64

isholiday() function 256 – 257, 259 – 263, 266, 268 – 272, 310

isholiday package 271

isspace() function 66

isterm() function 46 – 47

ITA2 (International Telegraph Alphabet No. 2) 144

items int variable 34

items variable 34, 36

J

JANUARY enumerated constant 277

K

Kernighan, Brian 130

key[] array 100

kibibytes 168

kludge technique 54

Ksh shell 19

L

-L (big L) switch 135

LC_CTYPE category 149

-L. (dash-big L-period) switch 135

ld program 4

leap years 282 – 283

Learn Linux in a Month of Lunches (Ovadia) 11

left() function 121 – 122, 124

LEFT$ command 121

len characters 121, 124

length() method 137

LENGTH constant 186

length constant 162

len integer 123

len variable 119, 138

libraries

linking 14 – 15

string 132 – 136

creating 134 – 135

using 135 – 136

writing source and header file 133 – 134

line[] buffer 83, 85, 162

line_out() function 174, 176 – 178, 184 – 186, 188

list_base pointer 35

list_base variable 34 – 36

-l (little L) switch 15 – 16, 135 – 136, 199

LLVM clang compiler 5

-lm switch 166, 267

locale command 149

locale variable 150

localtime() function 24, 250 – 251, 256 – 257, 276 – 278, 286, 288, 294

$LOGNAME environment variable 20

lotto() function 325 – 328, 330

lotto01.c code 321

lotto05.c code 327

lotto08.c code 330

lotto pick utility 312 – 330

avoiding repeated numbers 322 – 324

creating lotto() function 325 – 327

drawing lotto balls 320 – 322

generating random values 317 – 320

matching lottery picks 327 – 328

odds

overview 313 – 314

programming 315 – 317

testing 328 – 330

playing lotteries 313

lotto programs 325, 328

lowercase() function 98, 107

ls command 10, 194

ls -l command 284

M

madlib01.c program 103, 106

madlib02.c program 104, 106

Mad Libs program 108

make command 11

malloc() function 32, 111

man command 10

man fs command 192

man pages 27, 44, 69, 112, 115, 157 – 158, 162, 180, 195, 203 – 204, 208 – 209, 230,

252, 284 – 285

match char pointer 44

math (m) library 166

mday integer 261

mdays[] array 270, 283, 288, 294

mdays variable 294 – 295

message URL http

//brew.sh 11

methods 137

mid() function 122 – 124

MID$ command 121

MinGW 5

mkdir command 10

mktime() function 252, 254, 256

ML constant 350

month[] array 276 – 277

month program 285, 292, 295

months program 295

month variable 286, 289, 294, 301

mood variable 156

moon_phase() function 29 – 30

moon phase program 27 – 31

adding moon phases to greeting code 30 – 31

observing moon phases 28 – 29

writing moon phase algorithm 29 – 30

more filter 63 – 64

mp variable 30

mv command 10

mystring.o object code 135

N

n[] pointer array 268

name member 257

name members 240

-name switch 224

nato[] array 40 – 42, 64

nato03.c program 46

nato04.c progam 47

NATO (North Atlantic Treaty Organization) 38

NATO phonetic alphabet filter 64 – 65

NATO phonetic alphabet translator program 38 – 49

alphabet 38 – 39

from NATO to English 43 – 49

converting NATO input to character output 44 – 47

reading NATO input from file 47 – 49

reading and converting file 42 – 43

writing translator 41 – 42

ncal program 274 – 275

new buffer 127

noglob option 229

North Atlantic Treaty Organization. See NATO

no_sigma constant 160

now time_t variable 250

NULL constant 44, 104

number() function 98, 106

numbers[] array 322 – 323, 325

O

octal output 187 – 190

octet 199

OCT option 184

offset characters 126

offset integer 123, 125 – 126

ohex() function 80

omega constant 160

on_exit() function 176

OOP (object-oriented programming) approach for strings 136 – 140

adding function to structure 137 – 139

creating string 139 – 140

opendir() function 203 – 204, 208

opterr global variable 180

options01.c source code 181

options int variable 183 – 185

options series 183

org pointer 125 – 126

-o switch 13, 16, 183, 188 – 189

Ovadia, Steven 11

P

password[] buffer 99

password generators 93 – 108

random password program 97 – 101

adding conditions 98

building 97

improving password 99 – 101

random word password generator 101 – 108

building 106 – 108

generating random words 101 – 106

strategies 94 – 97

avoiding basic and useless passwords 94 – 95

complexity 95 – 96

word strategy 96 – 97

PATH_MAX defined constant 208

permissions_out() function 203

pithy05.c code 105

pithy saying program 31 – 37

adding phrases to greeting code 37

creating phrase repository 31 – 32

randomly reading phrases 32 – 37

plain text 69 – 78

ASCII 69 – 71

control codes 71 – 73

conversion tricks 76 – 78

generating noncharacter output 74 – 75

ply integer variable 337

pmonth variable 289

pointers (memory locations) 32

popen() function 249

pow() function 166

printf()() function 13, 27, 30, 34 – 35, 64, 69, 76, 79, 85, 90, 100, 112, 114, 130, 146, 150,

152, 166, 186, 198, 205 – 206, 220 – 221, 241, 251 – 252, 283, 285, 291, 294, 308 –

309, 318

-print switch 224

prntf() function 300

prompt() function 337 – 340, 346, 348

pseudo random 317

putchar(' \n') statement 301, 309

putchar() function 54 – 55, 69, 170, 172

putenv() function 284 – 285

puts() function 114, 337

putwchar() function 153, 163

putwchar(ch) statement 163

p variable 337, 348

pwd command 10, 208 – 209

Q

qsort() function 137

quadwords 165

R

rand() function 317 – 319, 346

random() function 317, 319

random02.c code 319

random password program 97 – 101

adding conditions 98

building 97

improving password 99 – 101

randomp series of programs 106

random values, generating 317 – 320

random word password generator 101 – 108

building 106 – 108

generating random words 101 – 106

randwords01.c code 102

ransom program 57

readdir() function 204 – 207

readdir02.c source code 205

readdir04.c source code 207

realloc() function 32, 36

recursion 212 – 217

repeat member 240 – 241, 243

reset[] sequence 335

reset command 73

return01 program 248

return keyword 176

return values 246 – 250

exit status vs. termination status 246

interpreting 247 – 249

preset 249 – 250

setting 246 – 247

right() function 122 – 124

RIGHT$ command 121

Ritchie, Dennis 130

rot13 filter 58 – 60

rot13 program 58 – 60

-r switch 135, 225

S

say command 43

saying variable 37

scanf() function 158 – 159, 338

scramble() function 99 – 100, 107, 115

screen dump 171

set +o noglob command 229

set_abbr() macro 184

setbuf() function 53

setlocale() function 149 – 150, 152 – 153

set macro 184

set -o command 229

set_oct() macro 184

shell commands 10 – 11

shell startup 18 – 21

overview 18

scripts

editing 20 – 21

overview 18 – 19

shift variable 61

sholiday() function 263

showgrid() function 335 – 336

Sh shell 19

S_IRGRP defined constant 200 – 201

S_IROTH defined constant 200

S_IRUSR defined constant 200

S_ISBLK() macro 198

S_ISCHR() macro 198

S_ISDIR() macro 198

S_ISFIFO() macro 198

S_ISLNK() macro 198

S_ISREG() macro 197 – 198

S_ISSOCK() macro 198

S_IWGRP defined constant 200

S_IWOTH defined constant 200

S_IWUSR defined constant 200

S_IXGRP defined constant 200

S_IXOTH defined constant 200

S_IXUSR defined constant 200

size characters 208

SIZE constant 178

sizeof operator 112 – 113, 119, 166

slice[] array 341 – 342

srand() function 319, 346

srandom() function 319

sscanf() function 86

-s switch 135

start_day variable 271

stat() function 195 – 197, 203, 206 – 207, 211

statbuf structure 195

stat command 197

stderr (standard error device) 176

stdin input device 51, 158

stdin (standard input) 162

stdlib.h library 284

stdout device 154

st_mode member 197, 199 – 200, 203

storage 164 – 175

dumping data 170 – 175

outputting byte values 169 – 170

storage units and size 165 – 168

str1.length function 138

strappend() function 115 – 116

strcaps() function 118, 128, 136

strcasecmp() function 45, 115

strcat() function 114 – 116, 125 – 126

strchr() function 114

strcmp() function 45, 113 – 115

strcoll() function 114

strcpy() function 34, 114, 125 – 126

strcpy() statement 35

strcspn() function 115

stream I/O 51 – 54

strfry() function 115

strftime() function 26 – 27, 291 – 292

string_create() function 139

string_destroy() function 140

string functions 116 – 132

changing case 117 – 118

converting tabs to spaces 130 – 132

counting words in strings 128 – 130

inserting one string into another 125 – 128

reversing strings 118 – 120

splitting strings 124 – 125

trimming strings 121 – 124

string library 132 – 136

creating 134 – 135

using 135 – 136

writing source and header file 133 – 134

strings 110 – 116

counting words in 128 – 130

inserting one into another 125 – 128

measuring 112 – 114

overview 110 – 111

returning vs. modifying directly 115 – 116

reversing 118 – 120

splitting 124 – 125

string functions 114 – 115

trimming 121 – 124

string structure 139 – 140

string utilities 109 – 140

OOP approach 136 – 140

adding function to structure 137 – 139

creating string 139 – 140

string functions 116 – 132

changing case 117 – 118

converting tabs to spaces 130 – 132

counting words in strings 128 – 130

inserting one string into another 125 – 128

reversing strings 118 – 120

splitting strings 124 – 125

trimming strings 121 – 124

string library 132 – 136

creating 134 – 135

using 135 – 136

writing source and header file 133 – 134

strings 110 – 116

measuring 112 – 114

overview 110 – 111

returning vs. modifying directly 115 – 116

string functions 114 – 115

strinsert() function 126 – 128

strlen() function 112 – 114, 119, 124, 127

strlower() function 118

strncat() function 114 – 115

strncmp() function 84, 114

strncpy() function 114, 125

strpbrk() function 114

strrchr() function 115

strrev() function 119

strsplit() function 125

strspn() function 115

strstr() function 115

Str string variable 137

str structure 137

strtabs() function 131

strtabs.c program 132

strtok() function 44 – 45, 86, 115

strtol() function 247

struct finfo variable 240

struct term *t pointer 105

strupper() function 117 – 118

strwords() function 128, 130

strwords.c program 129

strxfrm() function 115

subdir01.c source code 211

subdirectories 207 – 217

exploring 210 – 212

recursion 212 – 217

tools for 208 – 210

subdir program 212 – 213, 220

switch-case structure 180, 182

switches 179

syllables 165

symbol() function 98, 106

system() function 248

T

tabs command 130

terminal window, accessing 9

termination status 246

term structure 104

test_abbr() macro 185 – 186, 188

test macro 184

test_oct() macro 188

text representation 142 – 148

ASCII 145 – 147

early text formats 142 – 145

Unicode 147 – 148

text screen editors 11 – 12

thefirst() function 282, 294

THETA constant 277

three() function 349 – 351

THURSDAY defined constant 262

tic-tac-toe 331 – 352

approaching game mathematically 333 – 334

basic game 334 – 344

adding game play 337 – 339

creating game grid 334 – 337

determining winner 340 – 344

limiting input to free squares 339 – 340

computer plays 344 – 352

adding intelligence 348 – 352

choosing number of players 344 – 346

coding dumb opponent 346 – 348

playing 332 – 333

time() function 23, 250 – 251, 257, 278, 283, 286, 294, 319

time of day program 23 – 27

adding general time info to greeting code 25 – 26

adding specific time info to greeting code 26 – 27

obtaining current time 23 – 25

timespec structure 196

time_t data type 23, 278

time_t defined constant 225

time_t pointer 196

time_t variable 23

time zones 283 – 285

time zone (TZ) environment variable 284 – 285

tm_day member 252

tm_hour member 252

tm_isdst member 252

tm_mday member 252, 257, 286

tm_min member 252

tm_mon member 252, 257, 276

tm_sec member 252

tm structure 252 – 254, 256 – 257, 259, 276, 286, 291

tm_wday member 252, 259, 276, 286

tm_wday tm structure member 291

tm_yday member 252, 291

tm_year member 252

toblock() function 349

today tm structure 250

today variable 294

tohex() function 81, 91 – 92

tolower() ctype function 78

tomatch constant 328, 330

tomatch variable 329

toMorse() function 143 – 144

toupper() function 59, 78

towin() function 349

TREE command 220, 222

TREE utility 217 – 218

Tsch shell 19

ttt01.c code 337

ttt02.c code 339

type data type 137

tzset() function 284 – 285

TZ (time zone) environment variable 284 – 285

U

Unicode 147 – 148

unlink command 10

unsigned char pointer 174

unsigned long value 137

uppercase() function 98, 107

url_decoder01.c source code 92

URL encoder 89 – 92

creating 91 – 92

encoding rules 89

writing 90 – 91

urlencoder program 90

UTF (Unicode Transformation Format) 148

V

value variable 318

version() function 190

vi editor 11

VIM text mode editor 11

vocabulary[] array 102, 107

-v switch 190

W

wait() function 249

-Wall switch 13

wchar_t buffer 158

wchar_t data type 150 – 153

wday integer 261

wday variable 282

WEDNESDAY enumerated constant 281

week01.c program 286

weekday variable 286, 294, 298, 301

weekend() function 261, 268, 271

weekno variable 291

WEOF end-of-file marker 162

wide character programming 148 – 163

character types 150 – 152

generating output 152 – 156

locale settings 149 – 150

receiving input 156 – 160

working with wide characters in files 160 – 163

wide_hello.c program 154

wide_in.c source code 158

wildcards,using to find files 232 – 234

winner() function 327 – 328, 341 – 343

winners[] array 321

wint_t ch single wint_t variable 162

wint_t data type 160, 162

word[] buffer 48, 66 – 67

words 165

wprintf()() function 152 – 153, 155 – 156, 158, 162

wscanf() function 158 – 159

WSL (Windows Subsystem for Linux) 9, 17

X

XCode IDE 7 – 9

Y

year01.c code 295, 298 – 299

year03.c code 308

year04.c code 310

year program 295, 303, 306

year variable 294

yen wchar_t variable 151, 155

yen wide character 151

Z

zsh shell 11, 19, 130

	Tiny C Projects
	Copyright
	contents
	front matter
	preface
	Is C programming still relevant?
	Why did I write this book?
	acknowledgments
	about this book
	Who should read this book?
	How this book is organized: A road map
	Software/hardware requirements
	Online resources
	About the code
	liveBook discussion forum

	about the author
	about the cover illustration

	1 Configuration and setup
	1.1 The C development cycle
	1.1.1 Editing source code
	1.1.2 Compiling, linking, building

	1.2 The integrated development environment (IDE)
	1.2.1 Choosing an IDE
	1.2.2 Using Code::Blocks
	1.2.3 Using XCode

	1.3 Command-line compiling
	1.3.1 Accessing the terminal window
	1.3.2 Reviewing basic shell commands
	1.3.3 Exploring text screen editors
	1.3.4 Using a GUI editor
	1.3.5 Compiling and running

	1.4 Libraries and compiler options
	1.4.1 Linking libraries and setting other options in an IDE
	1.4.2 Using command-line compiler options

	1.5 Quiz

	2 Daily greetings
	2.1 The shell starts
	2.1.1 Understanding how the shell fits in
	2.1.2 Exploring various shell startup scripts
	2.1.3 Editing the shell startup script

	2.2 A simple greeting
	2.2.1 Coding a greeting
	2.2.2 Adding a name as an argument

	2.3 The time of day
	2.3.1 Obtaining the current time
	2.3.2 Mixing in the general time of day
	2.3.3 Adding specific time info

	2.4 The current moon phase
	2.4.1 Observing moon phases
	2.4.2 Writing the moon phase algorithm
	2.4.3 Adding the moon phase to your greeting

	2.5 A pithy saying
	2.5.1 Creating a pithy phrase repository
	2.5.2 Randomly reading a pithy phrase
	2.5.3 Adding the phrase to your greeting code

	3 NATO output
	3.1 The NATO alphabet
	3.2 The NATO translator program
	3.2.1 Writing the NATO translator
	3.2.2 Reading and converting a file

	3.3 From NATO to English
	3.3.1 Converting NATO input to character output
	3.3.2 Reading NATO input from a file

	4 Caesarean cipher
	4.1 I/O filters
	4.1.1 Understanding stream I/O
	4.1.2 Writing a simple filter
	4.1.3 Working a filter at the command prompt

	4.2 On the front lines with Caesar
	4.2.1 Rotating 13 characters
	4.2.2 Devising a more Caesarean cipher

	4.3 Deep into filter madness
	4.3.1 Building the hex output filter
	4.3.2 Creating a NATO filter
	4.3.3 Filtering words

	5 Encoding and decoding
	5.1 The concept of plain text
	5.1.1 Understanding ASCII
	5.1.2 Exploring the control codes
	5.1.3 Generating noncharacter output
	5.1.4 Playing with ASCII conversion tricks

	5.2 The hex encoder/decoder
	5.2.1 Writing a simple hex encoder/decoder
	5.2.2 Coding a better hex encoder/decoder
	5.2.3 Adding a wee bit of error-checking

	5.3 URL encoding
	5.3.1 Knowing all the URL encoding rules
	5.3.2 Writing a URL encoder
	5.3.3 Creating a URL decoder

	6 Password generators
	6.1 Password strategies
	6.1.1 Avoiding basic and useless passwords
	6.1.2 Adding password complexity
	6.1.3 Applying the word strategy

	6.2 The complex password jumble
	6.2.1 Building a silly random password program
	6.2.2 Adding conditions to the password program
	6.2.3 Improving upon the password

	6.3 Words in passwords
	6.3.1 Generating random words, Mad Libs style
	6.3.2 Building a random word password generator

	7 String utilities
	7.1 Strings in C
	7.1.1 Understanding the string
	7.1.2 Measuring a string
	7.1.3 Reviewing C string functions
	7.1.4 Returning versus modifying directly

	7.2 String functions galore
	7.2.1 Changing case
	7.2.2 Reversing a string
	7.2.3 Trimming a string
	7.2.4 Splitting a string
	7.2.5 Inserting one string into another
	7.2.6 Counting words in a string
	7.2.7 Converting tabs to spaces

	7.3 A string library
	7.3.1 Writing the library source and header file
	7.3.2 Creating a library
	7.3.3 Using the string library

	7.4 A kinda OOP approach
	7.4.1 Adding a function to a structure
	7.4.2 Creating a string “object”

	8 Unicode and wide characters
	8.1 Text representation in computers
	8.1.1 Reviewing early text formats
	8.1.2 Evolving into ASCII text and code pages
	8.1.3 Diving into Unicode

	8.2 Wide character programming
	8.2.1 Setting the locale
	8.2.2 Exploring character types
	8.2.3 Generating wide character output
	8.2.4 Receiving wide character input
	8.2.5 Working with wide characters in files

	9 Hex dumper
	9.1 Bytes and data
	9.1.1 Reviewing storage units and size mayhem
	9.1.2 Outputting byte values
	9.1.3 Dumping data

	9.2 Dump that file!
	9.2.1 Reading file data
	9.2.2 Fixing uneven output

	9.3 Command-line options
	9.3.1 Using the getopt() function
	9.3.2 Updating the dumpfile program code
	9.3.3 Setting abbreviated output
	9.3.4 Activating octal output

	10 Directory tree
	10.1 The filesystem
	10.2 File and directory details
	10.2.1 Gathering file info
	10.2.2 Exploring file type and permissions
	10.2.3 Reading a directory

	10.3 Subdirectory exploration
	10.3.1 Using directory exploration tools
	10.3.2 Diving into a subdirectory
	10.3.3 Mining deeper with recursion

	10.4 A directory tree
	10.4.1 Pulling out the directory name
	10.4.2 Monitoring directory depth

	11 File finder
	11.1 The great file hunt
	11.2 A file finder
	11.2.1 Coding the Find File utility
	11.2.2 Understanding the glob
	11.2.3 Using wildcards to find files

	11.3 The duplicate file finder
	11.3.1 Building a file list
	11.3.2 Locating the duplicates

	12 Holiday detector
	12.1 The operating system wants its vig
	12.1.1 Understanding exit status versus the termination status
	12.1.2 Setting a return value
	12.1.3 Interpreting the return value
	12.1.4 Using the preset return values

	12.2 All about today
	12.2.1 Getting today’s date
	12.2.2 Obtaining any old date

	12.3 Happy holidays
	12.3.1 Reviewing holidays in the United States
	12.3.2 Discovering holidays in the UK

	12.4 Is today a holiday?
	12.4.1 Reporting regular date holidays
	12.4.2 Dealing with irregular holidays
	12.4.3 Calculating Easter
	12.4.4 Running the date gauntlet

	13 Calendar
	13.1 The calendar program
	13.2 Good dates to know
	13.2.1 Creating constants and enumerating dates
	13.2.2 Finding the day of the week
	13.2.3 Calculating the first day of the month
	13.2.4 Identifying leap years
	13.2.5 Getting the time zone correct

	13.3 Calendar utilities
	13.3.1 Generating a week
	13.3.2 Showing a month
	13.3.3 Displaying a full year
	13.3.4 Putting the full year into a grid

	13.4 A calendar in color
	13.4.1 Understanding terminal colors
	13.4.2 Generating a tight-but-colorful calendar
	13.4.3 Coloring holidays

	14 Lotto picks
	14.1 A tax for those who are bad at math
	14.1.1 Playing the lottery
	14.1.2 Understanding the odds
	14.1.3 Programming the odds

	14.2 Here are your winning numbers
	14.2.1 Generating random values
	14.2.2 Drawing lotto balls
	14.2.3 Avoiding repeated numbers, another approach

	14.3 Never tell me the odds
	14.3.1 Creating the lotto() function
	14.3.2 Matching lottery picks
	14.3.3 Testing the odds

	15 Tic-tac-toe
	15.1 A silly kids’ game
	15.1.1 Playing tic-tac-toe
	15.1.2 Approaching the game mathematically

	15.2 The basic game
	15.2.1 Creating the game grid
	15.2.2 Adding game play
	15.2.3 Limiting the input to free squares
	15.2.4 Determining the winner

	15.3 The computer plays
	15.3.1 Choosing the number of players
	15.3.2 Coding a dumb opponent
	15.3.3 Adding some intelligence

	index

